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ABSTRACT

Flight experiments were defined for the COLD-SAT test bed satellite and the Shuttle

middeck to help establish the influence of the gravitational environment on liquid slosh dynamics

and control. Several analytical and experimental studies were also conducted to support the

experiments and to help understand the anticipated results.

Both FLOW-3D and NASA-VOF3D computer codes were utilized to simulate low Bond

number, small amplitude sloshing, for which the motions are dominated by surface forces; it was

found that neither code provided a satisfactory simulation. Thus, a new analysis of low Bond

number sloshing was formulated, using an integral minimization technique that will allow the

assumptions made about surface physics phenomena to be modified easily when better knowledge

becomes available from flight experiments. Several examples were computed by the innovative

use of a finite-element structural code. An existing spherical-pendulum analogy of nonlinear, rotary

sloshing was also modified for easier use and extended to low-gravity conditions.

Laboratory experiments were conducted to determine the requirements for liquid-vapor

interface sensors as a method of resolving liquid surface motions in flight experiments. The

feasibility of measuring the small slosh forces anticipated in flight experiments was also investigated.
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1.0 INTRODUCTION

1.1 Background

Many of the future spacecraft planned by NASA and DOD will contain large quantities of

liquids for propellants, life support, and other uses. As two examples, space vehicles for the

ambitious Space Exploration Initiative will transport and store hundreds of thousands of kilograms

of cryogenic propellants, and Space Station Freedom will contain tens of thousands of both cryogenic

and storable liquids that must be re-supplied in orbit. Future deep space probes and space-based

optical systems will also have a large fraction of their mass in the form of liquids. Controlling,

pointing, or docking of such spacecraft is critically dependent upon understanding and managing

the motion (sloshing) of the large masses of liquids in their tanks.

When liquid body forces are large, the "high gravity" motions of a liquid contained in a

tank are well understood, and analytical, numerical, and scale-model test methods have been well

established to treat them [1, 2, 3]. But, when liquid body forces are small, the "low gravity" motions

of liquid free surfaces are not nearly so well understood because they are dominated by surface

forces that are completely masked on earth by the much larger body forces. Note that the true

indicator of"low" gravity is the Bond numberBo, defined as Bo = g,ItR_/[3 where g¢is the effective

gravity or settling acceleration, Ro is a representative dimension of the tank such as diameter, and

is the specific surface tension of the liquid; Bond numbers of ten or less are generally considered

to represent "reduced" gravity and Bo << 1 to represent "micro" gravity. Spacecraft in near-earth

orbit usually have Bo -- 0.1 while deep space probes have Bo << 1.

The rudimentary flight tests that have been conducted to date [e.g., 4] have provided little

quantitative data about low gravity sloshing. Some information is available from drop tower and

ground test simulations for Bo -- 10 [e.g., 5, 6, 7] but these kinds of studies are hampered by the

small size of the tanks that must be used, the short test time, and (at least up to the present) the need

to use non-cryogenic liquids. As an example of the available information, it appears that viscous

slosh damping _ is larger in low gravity and, for a cylindrical tank, can be correlated by [5, 7]:

2 1/2
= A(v/f,,R,,) [1 +C(Bo) -#] (1.1-1)

where v is the kinematic viscosity, f, is the slosh natural frequency, and A, b, and C are

empirically-determined constants. Although _ should increase in low gravity because of the larger

wetted area of the liquid on the tank walls, the increase predicted by Eq. (1.1-1) for small Bo is

much larger than can be accounted for merely by the larger wetted area. Since the low gravity

response of a liquid to tank motions depends strongly on the physics of the contact line of the liquid

at the tank wall [8, 9], the anomalously high damping may be the result of poorly understood effects

at the contact line. Furthermore, the natural frequency measured in ground simulations of low

gravity sloshing varies by more than a factor of two between the extreme limits of a "free" contact



line anda "stuck"contactline [7]. For cryogens,thecontactline motionmay alsobeaffectedby
evaporationandcondensationeffects.Contactline effectsaretotallynegligiblewhenliquid body

forcesarelarge. Nonlinearsloshingalsoappearsto bemoreprominentin low gravity [10, 11].
Finally, becauseof the lackof low gravitysloshtestdatatoprovideinsight,all methodsto datefor

predicting liquid free surfacemotions in low gravity have employedpotentially unrealistic

assumptionsaboutthecontactline motion;noneof the assumptionshasasyet beenadequately

validated by comparison to test data.

In order to gain the required physical understanding about liquid motions in low gravity,

experiments are needed in an actual low gravity environment, using tanks of at least moderate size

and long test durations. The study documented in this report defines such a set of space-based

experiments and summarizes the supporting analytical models and ground-based testing. The study

initially concentrated on experiments using liquid hydrogen that were to be conducted with

NASA-LeRC's COLD-SAT test-bed satellite, but it was later extended to include the definition of

experiments using non-cryogenic liquids that can be conducted in the Space Shuttle.

1.2 Objective

The objective of the program was to conduct research to establish the influence of the

gravitational environment on liquid slosh dynamics and control, including analytical and

experimental studies.

1.3 Scope of Work

The project work was conducted in four technical tasks described below and one

administrative task. Succeeding sections of this Final Report discuss the accomplishments of each

technical task in detail.

1.3.1 Task I m Technology Requirements

For this task, future and planned NASA and DOD missions were reviewed to determine

typical ranges of parameters that are important for liquid dynamics and control. The parameters

included: tank shape, size, and fill level; internal tank structure and anti-slosh devices; spacecraft

maneuvers; and liquid thermophysical properties.

1.3.2 Task II m Definition of Flight Experiments

The efforts of this task were devoted to defining the specifications, instrumentation, and

data requirements for space experimentation on liquid free surface dynamics. It was composed of

three subtasks:

1. Review the preliminary COLD-SAT slosh dynamics experimental requirements

document and prepare an updated version, based on the conclusions from Task I.

2. Define an alternative flight experiment for the Space Shuttle, using a non-cryogenic

liquid.

2



3. Provide technical oversight to NASA as requested on the detailed development of

all COLD-SAT experiments.

1.3.3 Task I!1 m Analytical Model Development

The efforts of this task were devoted to developing analytical methods and models that

would allow liquid free surface experimental results to be analyzed and extended. It was composed

of four subtasks:

1. Investigate methods of improving the representation of surface physics effects in

FLOW-3D (conducted by Flow Science, Inc.).

2. Investigate NASA-VOF3D as a method of simulating liquid slosh in a low gravity

environment.

3. Develop a linearized slosh model of low gravity sloshing and implement it using

available finite-element computational technology.

4. Extend an existing spherical pendulum model of nonlinear rotary sloshing to low

gravity conditions.

Subtasks 3 and 4 constituted the bulk of the effort for Task IN.

1.3.4 Task IV -- Ground Experimentation

The efforts of this task were devoted to ground tests in support of instrumentation

development for the space experiments. It was composed of two subtasks:

1. Investigate liquid-vapor interface sensors as a method of tracking moving free

surfaces in a low gravity environment.

2. Determine the specifications for load ceils and accelerometers that could be used to

measure low gravity slosh forces and moments.
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2.0 TECHNOLOGY REQUIREMENTS

The definitions of low-gravity liquid-motion flight experiments were based on the ranges

of parameters that are anticipated for future NASA and DOD missions. The parameters selected

for this study were: (1) tank shape, size, and filling level; (2) internal tank structure and anti-slosh

devices; (3) low gravity environment; (4) vehicle motions; and (5) liquid properties.

2.1 Data Sources

Over twenty-five technical reports discussing proposed NASA and DOD missions were

reviewed to obtain numerical estimates of the selected parameters; references [12 - 17] are

representative examples of the reviewed reports. In addition, cognizant personnel at NASA centers

and at the Air Force Astronautics Laboratory were interviewed by project personnel.

2.2 Representative Tank Shapes, Volumes, and Gravity Levels

As specific examples, some details of the tanks for six planned or designed space vehicles

are summarized below.

Orbital Transfer Vehicle -- The propellants are LH2 and LO2. The baseline design LH2

tank is cylindrical with ellipsoidal ends and has a volume of approximately 5000 ft 3 (140 m 3)

and a diameter of 14 ft (4.4 m). The LO2 tank is a sphere with a volume of approximately

1500 ft 3 (42 m 3) and a diameter of approximately 14 ft (4.4 m). The gravity environment

ranges from about lgo to about 105go. The tanks for the proposed European Space Tug

are of similar sizes.

CRAF/Casslnl Space Probe -- The propellants for the main engine are monomethyl

hydrazine and N204; the propellant for the RCS engines is hydrazine. The main engine

tanks are spheres with a diameter of 5.1 ft (1.56 m). The RCS tanks are cylinders with

rounded ends, with a total length of 2.6 ft (0.8 m) and a diameter of 1.8 ft (0.56 m). The

gravity environment ranges from about 0.01go during a main engine f'u'ing to practically

zero gravity during a deep space coast.

Liquid Droplet Radiator System _ The planned tanks are of various shapes and sizes,

depending on the design, but are typically spheres about 3 ft (1 m) in diameter. The tanks

contain liquid metal or a very low vapor pressure oil. The gravity environment is 104go

to 106go .

Strategic Defense Initiative Optical Systems -- Specific tank designs are classified.

Typical tank shapes are spheres and cylinders with rounded ends. The liquids are cryogenic

propellants as well as storables. One unclassified design study tank is a 21 ft (6.4 m) sphere

containing up to 21000 lbs (9500 kg) of LH2. The gravity environment can be as low as

lO'Tgo .
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Compact Cryogenic Feed System -- The LO2 tank of this system is a torus with a

major diameter of 9.6 ft (2.9 m) and a minor diameter of 4.6 ft (1.4 m). The gravity

environment ranges from high-gravity to 10_go.

Space Station -- Some designs of the Space Station include tanks that are large enough

to refill two Orbital Transfer Vehicle LH2 tanks. Typical "large" tanks are spheres with

volumes of 5000 ft 3 (140 m3). The gravity environment is about 10Sgo - 10ego .

2.3 Summary of Parameters

Based on the data sources and interviews, it was concluded that the most common tank

shapes for future missions are spheres and cylinders with ellipsoidal ends. Tank volumes range

from 5 ft 3 (0.14 m s) to over 5000 ft3 ( 140 mS). During most missions, the tank filling level will vary

from nearly full to nearly empty. Most tanks will contain liquid acquisition devices, typically

screened channels running the length of the tank. None of the tanks surveyed contained any specific

anti-slosh devices since the designs were not yet sufficiently mature to consider sloshing; however,

liquid acquisition devices such as channels and central cruciform vanes are known to damp

high-gravity sloshing effectively.

The gravity environment covers the range from lg° to 10"6go (and even smaller for deep

space probes). The non-dimensional Bond number of course depends on tank size and liquid surface

tension as well as gravity level. As examples, at the lower range of gravity levels (-_106go) the

Bond number forLH 2 is 0.09 for a 1 m diameter tank and 9.1 for a 5 m diameter tank; for LO2, the

corresponding Bond numbers are 0.21 and 21. The contact angle for most cryogens and propellants

is close to 0" against tank materials of aerospace interest; that is, the liquid "wets" the tank wall

material. The ratio I] of surface tension to density for most cryogens and propellants ranges from

0.0007 ft3/sec 2 (20 cm3/sec 2) to 0.001 ft3/sec 2 (30 cm3/sec2).

Space vehicle motions are of three general kinds: (1) g-jitter; (2) attitude control maneuvers;

and (3) thrusting and other large impulses such as docking. The magnitude and frequency content

of g-jitter depends on the space vehicle in question; for the Space Shuttle, as an example, the rms

magnitude is of the order of 10_g° and almost all the frequency content is above 1 Hz. Attitude

control maneuvers are likewise dependent upon the mission; typical maneuvers include slewing

around one of the vehicle axes at 2°/see and low-frequency, small-amplitude oscillations around

all three axes. Thrusting and docking can impose impulsive accelerations typically of the magnitude

of 0.1go. The variety of tank motions implies that both large and small amplitude liquid motions

will be excited.

2.4 Conclusions

Based upon the current state of knowledge and the survey described above, the desired

; technology requirements for a flight experiment can be summarized as:



• Sphericalandcylindrical tankswith ellipsoidalendsshouldbe tested;"bare" tanks

andtankswith internalliquid acquisitiondevicesarebothimportant.
• Cryogenicliquids aredesirableasthetestliquid; in anycase,thetestliquid should

wet thetankwall material.

• Bond numbersfor thetestsshouldcoverarangefrom --10to nearzero.

• Tankmotionsshouldincludelargeandsmallamplitudeimpulsiveaccelerationsand

sustainedsmall-amplitudeoscillatoryaccelerations.

• Liquid motionsinvestigatedin the testsshould include small amplitude,linear

sloshing;moderateamplitude nonlinear planar and rotary sloshing; and large

amplitude, reorientation-likemotions that eventuallysettle down to long-lived

small-amplitudesloshing.

Dataacquiredfromthetestsshouldbesufficientinqualityandquantitytovalidateanalyticalmodels

andguidethedevelopmentof improvedmodels.Previousground-basedsloshtestshaveindicated

that themostusefulformsof dataare(in descendingorderof usefulness):detailedmapsof free

surfaceshapesandmotions(motionpictures,videorecordings,etc.);sloshnaturalfrequencies;time

historyor frequencysweepsof theforcesandtorquesexertedon thetank;andsloshdamping.
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3.0 DEFINITION OF FLIGHT EXPERIMENTS

3.1 General

A flight experiment was defined for both the COLD-SAT satellite and the Space Shuttle

middeck. The complete Experiment Requirements Document for the COLD-SAT slosh dynamics

experiment is included as Appendix A of this Final Report; it is summarized in Section 3.2. The

definition of the Space Shuttle experiment is given in Section 3.3. The characteristics common to

both definitions are described below.

3.1.1 Oblectlves

The specific objective of both flight experiments is to quantify the liquid motion resulting

from typical maneuvers of space vehicles in a low gravity environment. Physical processes to be

investigated include:

Static liquid configurations m The shape and location of the liquid in the test tanks

will be monitored under ambient orbital conditions.

Liquid response to various discrete accelerations -- Impulsive and periodic

accelerations of selected amplitude, frequency, and duration will be applied and the free

surface response monitored.

Slosh damping -- Viscous damping will be determined for all tested conditions; if

possible, the damping provided by a ring baffle should also be measured as a demonstration

of an anti-slosh device for low gravity sloshing.

3.1.2 Key Parameters

The key parameters that are expected to influence sloshing in low gravity are: (1) liquid

surface tension, density, and viscosity; (2) contact angle of the liquid at the tank wall; (3) tank shape

and internal hardware; (4) liquid fill level; (5) steady settling acceleration; and (6) disturbance

acceleration. Because most liquids of aerospace technological importance have static contact angles

of -- 0" against common metals, the static contact angle parameter will not be varied in the flight

tests. The steady settling acceleration can be varied in the COLD-SAT experiment alternative but

not in the Shuttle experiment. All other parameters will be varied in the relevant non-dimensional

form.

3.1.3 Measurements

The free surface configuration, slosh force, and tank acceleration environment constitute

the bulk of the test measurements.

Free surface configuration -- Mapping the static and dynamic configuration of the

free surface is one of the most important methods of understanding and correlating

experimental results. For example, the wave shape near the wall indicates whether the

contact angle remains constant during sloshing ("free" contact line) or changes. Likewise,

rotary slosh is most easily detected by observing the free surface motion. Ideally, the
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mapping should employ both visual records such as motion pictures and an array of digital

liquid-vapor sensors to track the position of the free surface quantitatively at a number of

discrete locations. For the COLD-SAT experiment, visual observations are not possible,

so liquid-vapor sensors must be used exclusively.

Liquid-vapor sensors should be positioned in at least two perpendicular arrays, as

illustrated in Figure 3.1-1. Ground testing (see Section 5.0) indicated that the overall free

surface shape and motion can be resolved satisfactorily by a radial spacing of the sensors

as large as 40% of the free surface radius and a vertical spacing as large as 10% of the free

surface radius. The level of resolution provided by this spacing is satisfactory to determine

the predictive accuracy of existing models. More fundamental information may be required

to determine weak assumptions and potential sources of improvement in the models. For

example, the relation between the dynamic contact angle and the contact line velocity can

have a significant effect on the slosh frequency and force [7], even though existing models

assume that the dynamic contact angle remains equal to the static contact angle. To acquire

detailed data about the wave shape near the wall from which the behavior of the dynamic

contact angle can be inferred, a denser array of sensors is required in the vicinity of the

wall, for at least one liquid level. Sensors in these denser arrays would have to be spaced

symmetrically at about 0.02Ro above and below the selected free surface level over a total

vertical distance of about 0.1Ro, and at least two such vertically-spaced arrays would have

to be positioned radially at intervals of 0.02Ro from the wall. Because of the "bent over"

geometry of the tank-liquid intersection for spherical tanks (see Section 4.0 and Figure

4.4-3), the dense arrays are most readily made applicable to cylindrical (straight wall) tanks,

although a dense army of sensors positioned along a radial line could be used for spherical

tanks. In addition, the array installation must not significantly interfere with the slosh wave

motion. It is understood that the use of dense arrays of liquid-vapor sensors will require

substantial data acquisition rates and may interfere with other experiments; thus, their use

may be restricted to the Shuttle-based experiment.

Load cells -- The slosh force and torque exerted on the tank by the liquid in motion will

be measured by load cells. The support structure of the tanks must be designed to

accommodate these cells.

Aeeeleration environment m Both the effective settling acceleration and the time history

of the disturbance accelerations will be measured by accelerometers and gyros.

Temperature and pressure -- Liquid temperature will be measured at the start and end

of each test to determine the liquid properties. For the COLD-SAT experiment in which

cryogens are used, liquid pressure will also be measured.
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3.1.4 Data Analysis

The initial configuration of the liquid and the static contact angle will be determined by

liquid volume and liquid-sensor measurements (and visual records for the Shuttle experiment) before

the perturbation acceleration is applied. Accelerometer and gyro data will be used to determine the

motion imposed on the tanks.

For the impulsive perturbation tests, liquid-vapor sensor measurements (and video or

cinema recordings for the Shuttle experiment) will be analyzed to determine: (1) slosh wave shape

and amplitude as a function of time; (2) slosh natural frequency; and (3) slosh damping from the

decay of the slosh wave amplitude. If a dense array of sensors is used near the wall as suggested

above, contact angle and contact line velocity will also be computed as a function of time; if not,

these quantities will still be estimated but the resolution is not expected to be sufficient to identify

the relation between dynamic contact angle and contact line velocity. Load cell force histories will

be analyzed to confirm the slosh natural frequency and damping data and to compute the slosh

force. For periodic perturbations, the data analysis will be similar to the impulsive acceleration

tests. In addition, load cell data, in conjunction with damping data from the impulsive tests for the

same Bond number and liquid level, will be analyzed to determine the effective mass of liquid

participating in the sloshing. When nonlinear effects are prominent, the line of action and the

phasing of the slosh force relative to the excitation will also be determined from the load cell data.

Physical properties of the liquids will be computed from the temperature and pressure

measurements, using tabulated data.

3.2 Summary of COLD-SAT Experiment Definition

3.2.1 General Description

Baseline designs of the COLD-SAT satellite envision three LH2 tanks; a large "supply"

tank [volume -- 125 - 175 ft 3 (3.5 - 5 m3)] and two "receiver" tanks, one that is almost spherical

[diameter = 3.0 ft (0.9 m)] and one that is cylindrical with ellipsoidal ends [diameter = 3.0 ft (0.9 m),

length _ 5.5 ft (1.7 m)]. Slosh tests are defined for both receiver tanks to investigate the influence

of tank shape. The cylindrical receiver tank contains a liquid acquisition device (screened channels),

and various spray systems to study tank filling, cooldown, and cryogenic mixing. The spherical

receiver tank is nominally "bare" but does contain spray systems. For the slosh tests, it is proposed

that the cylindrical tank be fitted with a single ring baffle near its midpoint, to permit the investigation

of a typical anti-slosh device. The COLD-SAT propulsion system will be used to provide the steady

settling accelerations and the disturbance accelerations for the slosh tests. The slosh experiments

can be performed as opportunities permit when the liquid filling levels of interest are available

during other tests.
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3.2.2 Measurements and Instrumentation

The measurement and insmamentation requirements are summarized in Table 3.2-1.

3.2.3 Hardware Requirements

The special hardware items required for the experiment are: (1) annular ring mounted in

the cylindrical receiver tank; (2) load cells and accelerometers mounted on the support structures

of both receiver tanks; and (3) liquid-vapor sensor arrays in both receiver tanks.

3.2.4 Test Matrix

Two general kinds of tests will be conducted: (1) oscillatory disturbance acceleration, and

(2) impulsive disturbance acceleration. The tests are further arranged as being of first and second

priority. Table 3.2-2 summarizes the test matrix. The steady settling accelerations listed in the

table conform to the nominal levels that can be obtained by fining a single COLD-SAT engine or

a combination of engines. The nominal perturbation accelerations correspond to levels that can be

obtained by firing the the appropriate attitude control thrusters or, depending on the COLD-SAT

design, a gimbaled engine; impulsive accelerations are obtained by fining the engine for a short

time and periodic accelerations by on-off firings for scheduled periods. The predicted natural period

of the slosh waves for the various tests is indicated by the symbol x, under the heading "Comments"

in the table.

3.3 Shuttle Flight Experiment

3.3.1 General Description

The Shuttle flight experiment is designed to fit into two middeck lockers using a double

mounting plate. Figure 3.3-1 shows a conceptual design of the flight experiment package. Three

spherical tanks will be used in the first flight; cylindrical tanks will be used for a second flight unless

the tanks can be changed out during the first flight. Two alternatives are considered: all tanks have

different diameters [ 13 in., 7 in., and 3.5 in (33 cm, 18 cm, 9 cm)] to permit a thorough investigation

of tank size effects, or the two smaller tanks have the same size [7 in (18 cm)] to permit liquids of

different viscosity to be tested in tanks of the same size and shape. Further trade studies are required

to determine the relative advantages of each alternative. The test liquid is either water (containing

a surfactant, defoamer, and bactericide) or silicone oil, the choice depending primarily on safety

trade studies.

Figures 3.3-2a and 3.3-2b show the Bond number and predicted slosh frequency for a

spherical tank as a function of settling acceleration and tank diameter, for a liquid having

o/p = 0.0009 ft3/sec 2 (25 cm3/sec _) typical of silicone oils. (The Bond numbers and frequencies

would be slightly larger for water.) For all the tank sizes suggested for the flight experiment, the

Bond number is considerably less than one for the steady settling accelerations that are anticipated
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for the Shuttle. The flight experiment does not contemplate thrusting to increase the settling

acceleration to give larger Bond numbers. The use of very small Bond numbers has the

advantage that the slosh characteristics for a given tank size and shape are nearly independent of

the magnitude of the settling acceleration; hence, accurate measurements of the Shuttle ambient

acceleration are not required. All the tests will be conducted with half-full tanks that have been

pre-loaded and sealed on the ground.

The desired perturbation accelerations will be provided by a controllable electrodynamic

shaker attached between the locker mounting plate and tank support plate, as shown in Figure 3.3-1.

When the test tanks are cylindrical, the axis of the tanks must be aligned with the steady g-vector

at the locker location to within + 2" to preserve the symmetry of the liquid free surface configuration.

To accomplish this while allowing some flexibility in the experiment integration and mission

planning, the orientation of the shaker and tank support plate combination can be manually adjusted

over a range of about + 15" before the experiment is installed in the locker. Orientation of the

spherical test tanks with respect to the g-vector is not critical, but the axis of the electrodynamic

shaker should still be roughly perpendicular to the g-vector in order to excite lateral sloshing.

For the proposed tank sizes, the liquid motions of the types to be studied in the experiment

are insensitive to vernier RCS firings because the magnitude and duration of the resulting tank

accelerations are less than that required to destabilize the free surface. They should also be

insensitive to g-jitter because of the large mismatch between the g-jitter frequencies and the slosh

natural frequencies. Accelerations from a main RCS firing will, however, cause the liquid surface

to break up or grossly reorient, so the longer duration tests must be conducted during quiet times.

The weights, power, and size requirements are within middeck allowables, assuming that

a Shuttle video camcorder can be supplied by NASA without penalty to the experiment. Trade

studies during further analysis (i.e., Phase B of a normal flight experiment program) may indicate

that motion pictures offer significant advantages over video recordings; if so, the experiment can

be expanded to three middeck lockers to permit additional battery power for the motion picture

cameras and lighting. The c.g. location of the flight experiment package is about 10 in. (25 cm)

from the face of the double adapter plate. Lockout mechanisms will be installed between the tanks

and the support plate and between the support plate and the locker side braces to eliminate potential

damage during launch and re-entry.

3.3.2 Measurements and Instrumentation

The static orientation and the dynamic motions of the liquid free surface will be measured

by liquid-vapor sensors and recorded by a camcorder or motion picture camera focused on the test

tank. Slosh force and torques will be measured by load cells. The tank table accelerations will be

measured by accelerometers mounted on the table. The table displacement and frequency will be
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measured by a linear variable differential transformer (LVDT). All the measurements are within

the capabilities of instrumentation used in previous ground studies. Figure 3.3-3 shows a block

diagram of the instrumentation.

A controller for the shaker actuator is included in the design to produce the desired excitation

waveforms. Frequencies of 0.003 to 0.1 Hz are required. An onboard data logger - controller -

mass storage computer will be used to acquire up to 60 channels of analog data which will be

converted to 10-bit digital form for storage. All the instrumentation and data acquisition equipment

will operate on the 28 volt d.c. power available at the middeck lockers.

3.3.3 Hardware Requirements

Table 3.3-1 lists the weights, sizes, and power requirements of the primary subsystems of

the flight experiment. The listed weights, power consumptions, etc., are based on commercially

available equipment.

3.3.4 Test Matrix

The test matrix is shown in Table 3.3-2. Five types of tests are defined:

Ambient configuration -- The liquid interface shape will be measured before each test

(i.e., without excitation). The measurements will be used to validate analytical models and

to confirm the desired initial conditions.

Small amplitude Impulsive translation -- An impulsive displacement will be applied

by the shaker. The free decay of the wave motion (force and wave amplitude) will be

recorded for up to eight slosh cycles. The tests will establish the fundamental slosh

frequency, the frequency of any excited higher modes, and the viscous damping of the

fundamental mode, all of which can be used to validate analytical models. Additionally,

the results will allow the controller software to be updated to make subsequent harmonic

excitation tests less time consuming.

Small amplitude harmonic translation _ The table frequency will be swept from 25%

below the fundamental slosh frequency to 25% above it. Force amplitude and phase angle

and surface wave amplitude will be measured continuously. These tests can be used to

improve and validate analytical models and to establish equivalent mechanical models of

low gravity sloshing.

Large amplitude harmonic translation -- The table frequency will be held constant

for 8 to 10 cycles at a few specific frequencies near the slosh natural frequency. The

amplitude of the shaker actuator will be considerably larger than for the previously

described tests in order to excite nonlinear, rotary sloshing. Slosh force (in-line and

cross-axis) and phase angle and free surface orientation will be measured. The results will

be used to assess the importance of nonlinear effects in low gravity and to validate and

improve analytical models.
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Large amplitude impulsive translation -- A large translational impulse will be

applied to all the tanks simultaneously. After the initial large liquid motion is over, the

settling time will be determined by measuring free surface orientations. The results can

be used to improve and validate computational fluid dynamics codes of liquid

reorientation and settling.

The total test time, not necessarily continuous, is about four hours. Individual tests, which must be

continuous, last from about 7 minutes to 35 minutes.
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4.0 ANALYTICAL MODELS

4.1 General

Several different studies were pursued for prediction of liquid motions in low gravity. First,

two computational fluid dynamics codes that can model free surface motions -- FLOW-3D and

NASA-VOF3D -- were investigated to determine their ability to simulate sloshing at small Bond

numbers. Both codes are widely used to simulate liquid motions in low gravity when inertia forces

control the motions, as, for example, occurs when a large acceleration is induced by thrusting. The

present investigation indicated, however, that neither code yields a satisfactory simulation of liquid

motions when surface forces are dominant, such as might occur during spacecraft station-keeping

or guidance maneuvers or after large amplitude motions have decayed to small amplitude sloshing.

For that reason, an analysis of small-amplitude low gravity sloshing in axisymmetric tanks was

developed here and implemented computationally using available finite-element technology. This

model, which is described in Section 4.4, is meant to supplement FLOW-3D or NASA-VOF3D.

In addition, an existing spherical pendulum mechanical analogy of nonlinear, rotary sloshing was

modified to allow greater ease of numerical predictions and extended to low gravity conditions.

This development is described in Section 4.5.

4.2 FLOW-3D Simulations

FLOW-3D (1988 version) was used to simulate sloshing in a one-meter spherical tank for

Bond numbers of 0.1, 1.0, and 10.0. The contact angle for the simulations was 5" and it was held

constant during motion by activating the "wall adhesion" option. The equilibrium shape and position

of the free surface were computed separately and input to FLOW-3D as an initial condition. A

small lateral velocity was imparted to the tank to initiate the sloshing.

The simulation was poor for all Bond numbers. In fact, the gas bubble above the free

surface did not remain at its equilibrium position even when no motion was imparted to the tank,

but instead migrated to the center of the tank. This behavior prevented the computation of realistic

sloshing motions. After discussing the results with Flow Science, Inc. (the developers of

FLOW-3D), it was concluded that the way surface tension and wall adhesion are modeled in

FLOW-3D is not adequate to represent conditions in which surface tension forces are large compared

to body forces.

Consequently, Flow Science, Inc., through a subcontract with SwRI, reviewed the modeling

of surface effects in FLOW-3D and suggested several possible improvements that would in principle

allow the code to be extended to small Bond number conditions; the suggested improvements are

documented in [18]. As a result of this review, a significant improvement in the wall adhesion

model was incorporated in the 1990 version of FLOW-3D, which removes the tendency of the gas

bubble to migrate away from the walls toward the center of the tank. A more exact representation
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of surface tension forces is also being evaluated but not yet incorporated in FLOW-3D. Until these

improvements are incorporated, FLOW-3D is not capable of realistic simulations of sloshing when

surface tension forces are predominant.

4.3 NASA-VOF3D Simulations

NASA-VOF3D and FLOW-3D both share the same structure and basic VOF (volume of

fluid) algorithms. In particular, the representation of surface tension forces is similar for both codes,

although NASA-VOF3D does not specifically contain a "wall adhesion" option to maintain a

constant contact angle. Los Alamos National Laboratory (LANL) has modified the original VOF

series of codes, under NASA sponsorship, to make them more applicable to fluid motions in low

gravity. Since NASA-VOF3D is a vectorized code that executed quite slowly on SwRI's VAX

8700, SwRI requested LANL personnel to run the same three simulations attempted with FLOW-3D

on LANL's CRAY computer. The sequence of visualizations shown in Figure 4.3-1 gives some

typical results from the LANL simulations. The bulk of the liquid surface does move in a

sloshing-like wave motion but the contact line appears to be stuck to the wall. Furthermore,

numerical convergence problems (which LANL has since eliminated) caused a fictitious wave to

appear on the surface at r = 0 which then propagated away from the center. It was concluded that

the surface force representation in NASA-VOF3D must be improved before realistic simulations

of small Bond number sloshing are possible.

Both FLOW-3D and NASA-VOF3D solve unsteady flow problems by time-stepping from

a known initial condition to a final condition that is compatible with a specified motion of the tank.

They are thus inherently clumsy to use as a method of predicting, for example, the natural frequency

of an oscillatory liquid motion. Consequently, as a tool for control system simulations or as a means

of establishing equivalent mechanical models, neither code is as useful as the "eigenvalue" type of

codes routinely used for high gravity sloshing.

4.4 Llnearizefl Low Gravity Sloshing Model

4.4.1 Background

Since the surface phenomena which can dominate low gravity motions are not yet well

understood, previous analyses of low gravity liquid sloshing [7, 19-23, including FLOW-3D and

NASA-VOF3D] have assumed simplified and perhaps unrealistic surface conditions; a typical

assumption is that the contact angle remains constant during liquid motions, independent of the

contact line velocity (i.e., the contact line is "free"). In the analysis described here, the equations

of linear low-gravity sloshing are formulated and reduced to an integral-minimization technique

that, while at present employing the same simplified surface physics assumptions as previous

analyses, does permit a better representation of surface physics phenomena to be incorporated

readily when the needed understanding becomes available. Errors in previous analyses of the low-g

slosh force are also corrected in the present treatment. The equations are solved by a numerical
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method based on a finite element structural code; the solution method can thus be easily adopted

by other investigators. Several numerical examples are presented, and the parameters of an

equivalent mechanical model are also computed.

4.4.2 Equations of Motion

Most tanks used in space applications are axisymmetric, and most liquids used in space

applications are incompressible and nearly inviscid. Thus, the following idealizations are employed

in the analysis:

• the tank and static liquid configuration are axisymmetric;

• the liquid motion is irrotational and derivable from a velocity potential ¢;

• the motions are small enough to permit the equations to be linearized; and

• only those slosh modes are considered that vary as the cosine of angular coordinate 0,

since such modes are the only ones that produce a net force or moment on the tank.

When needed, viscous damping can be incorporated as a small correction by the methods described

by Abramson, et A1. [1].

The geometry is shown in Figure 4.4-1. Because the contact angle _tcis small, the equilibrium

free surface is highly curved. (Both the bottom and top of the tank can be dry for some combinations

of low filling levels, tank shape, and Tc [24], but such cases are not considered here.) A

surface-normal coordinate system s, 0, n is used to analyze the boundary conditions at the free

surface in order to avoid the possibility of double valued expressions.

The velocity potential must satisfy the condition of liquid incompressibility:

V2* =r_rr _, _rr J+_"_+_z 2=0 in the fluid volume, V (4.4-1)

Since the liquid cannot penetrate the tank walls, ¢ must satisfy the "no flow" condition at the walls:

- 3¢
X7¢ • n = _nn = 0 on the walls, w (4.4-2)

where _" is the outward-pointing normal. At the free surface, the wave velocity must be compatible

with the liquid velocity:

on the free surface, f (4.4-3)
_t - _n

where rl is the wave height measured normal to the free surface, as shown in Figure 4.4-1.

The wave height and liquid velocity must be interrelated so as to satisfy the requirement

of constant pressure p at the free surface. This relationship can be expressed as:

(dr) _tp+pg z+rl-_s +p -q(t) on the free surface, f (4.4-4)
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where q(t) is a function of at most time, and r(s) is evaluated onf. Since the liquid pressure at the

surface is less than the gas pressure immediately above the liquid because of surface tension,p must

also satisfy the relation that:

p = pg - 2_: on the free surface, f (4.4-5)

where 2_¢ is the mean curvature of the surface. From differential geometry, the mean curvature is

related to the equation of the moving free surface, say Y(s,O,t)=n-rl(s,O,t)=O, by

2_ =-V. (V_I V_ I-i). Linearizing this expression for 21¢ with respect to the slosh wave height

gives:

13( Orl'_ lOZrl (1 1"_ +(1+1"_ (4,4-6)

Here r#, r2 are the principal radii of curvature of the equilibrium free surface:

rl CdsZ J ds ds Cds2 ) ' r2 r _ ds )

where r and z are evaluated on f. By combining Eqs. (4.4-4)-(4.4-7),

(4.4-7)

subtracting out the

time-independent terms (which are the equations of the equilibrium free surface described later),

and absorbing q(t) into the gas pressure, the "dynamic" boundary condition of constant pressure at

the free surface is obtained:

[(__1(__) 1 _(r _'_ 1(0:'_ (1 1 Pl- _ onf

Equations (4.4-3) and (4.4-8a) can be combined to eliminate the wave height tl:

rOst. OsJ-Tt. -OS)-t,r, t. ) -77t

(4.4-8a)

on f (4.4-8b)

A free contact line (i.e., constant contact angle) is sometimes a reasonable approximation

for some liquids and tank wall materials [7]. Hence, pending the acquisition of better knowledge

from space experimentation, that condition is assumed here. With reference to the sketch shown

in Figure 4.4-2a, this assumption reduces to:

cosyc = t). t) = + • + = n,,, nn+n . • +n n • (4.4-9)

For the equilibrium surface, the unit vectors in Eq. (4.4-9) can be expressed as:

vJ'. vj', -" -"= cos - sin ; n n = e, (4.4-10a)

and to the first order in the arc lengths As and A_, the changes in the unit vectors as the surface

moves away from its equilibrium position are:
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_ dz --.
_w - -A_(_--_ 1 (cos yce, + sin yce' . ) (4.4-10c)

Since As - TIcot% and A_ - TI/sinyc, the assumed condition at the contact line thus reduces to:

siny_-s + cosy_ - = 0 at the contact line, s = s_ (4.4-11)

Note that Eq. (4.4-11) is satisfied identically when y_ -- 0 °. Methods of incorporating contact line

conditions other than the free condition will be discussed later.

4.4.3 Equilibrium Surface

Dropping the time-dependent terms from the combination of Eqs. (4.4-4) and (4.4-5) gives

the equation of the equilibrium free surface z =f(s):

g±+±]
Pgf- t, r, r2 ) = p° - p' = _° (4.4-12)

with boundary conditions:

af
f=_s-s=0 at s=O(r=O,z=-Zo); Z-_=yc at s=sc(r=r_,z=z,) (4.4-13)

The second part of Eq. (4.4-13) merely states that the slope angle of the free surface and the slope

angle of the wall differ by the contact angle at the contact point. The pressure-reduction parameter

;Lo and the coordinates Zo, s_, r_, and zc must be determined as part of the solution such that the

volume of liquid under the free surface is equal to the specified liquid volume.

4.4.4 Slosh Force

In normal gravity, the slosh force is due entirely to the time-dependent liquid pressure

exerted on the wetted walls. In low gravity, however, the "pull" of surface tension on the tank walls

becomes unbalanced, which creates an additional force, and the pressure force itself includes a

component that is negligible in normal gravity.

The part of the lateral slosh force that is caused by the pressure on the tank walls is:

r_ f& +n,,_,x
Fp = .,o .,4 [po-pgz-p(Od_/at)]l,=, r,,cosOdzdO (4.4-14)

In this equation, rl, is the wave height at the contact line measured tangential to the wall (i.e., rh

corresponds to the wetted wall), and rl, sin Z is the vertical displacement of the wave at the contact

line (see Figure 4.4-2a). Note that 1"1,= rlccory_, where 1"1¢= rl (s = s_, 0, t) is the wave height measured
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normal to the free surface at the contact line. Since the slosh modes of interest vary with cos O, the

potential can be expressed as ¢ = (_(r, z, t) cos 0 and the wave height as rl = aq(s, t) cos 0. Thus, Eq.

(4.4-14) can be integrated with respect to 0 and then linearized with respect to _ and _ to give:

f,t"

F p = [(P o - Pg fc )nr, cotyc sin Z]_ -nP J--a (_/Ot)[ , = , rwdz (4.4-15)

The term po - pgf,, which is equal to -2o')c c, represents the pressure discontinuity from the gas to

the liquid at the contact line that is caused by capillarity. Some previous analyses [e.g., 21] have

linearized Eq. (4.4-14) before performing the integration and thus have incorrectly neglected this

term.

For the equilibrium surface, surface tension pulls on the tank walls equally around the

circumference of the contact line, and there is clearly no net lateral force. But during sloshing, the

contact line is displaced along the walls, and the surface tension pull becomes unbalanced. With

reference to Figure 4.4-2b, a surface tension force (_da is exerted on a differential element da of

the displaced contact line. The component of this force in the plane of the wall is _dacosyc. The

force is inclined to the horizontal at the small angle tan'l(-Orh / rw_O) -- -0rh / rw_0. Since da =

rwd0 to first order, the net lateral force F,, exerted on the tank by surface tension at the contact line

is therefore:

F a = - _cosT, cotT# , =,, sin Od0 = (rc_cos_,ccotT_)rl_ (4.4-16)

With the exception of [7], previous analyses of the low-g slosh force have not considered F e.

The total lateral slosh force Fp + F a is:

F = - rcp f_'(O_/Ot)r,,dz - [r_g cotTc(2)c_r, sin Z- cos 7c)]_ (4.4-17)

When the fn'st part of Eq. (4.4-15) is neglected [21], the calculated slosh force will be too large.

When Fa is neglected [19, 20], the slosh force will be too small and can even be of the wrong sign.

The slosh moment can be developed similarly but, for brevity, is not presented here. It is

included, however, in the computer programs used to make numerical predictions.

4.4.5 Non-Dimensional Equations

For numerical work, it is best to solve the equations in non-dimensional form. Furthermore,

since free vibrations are of interest, the equations are reduced to an eigenvalue problem by assuming

that _ varies harmonically in time as exp(i0_t), where co is the slosh natural frequency to be

determined. Upper case letters are used for non-dimensional coordinates (for example, S = s/Ro).
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The non-dimensional potential • is defined as _b/_/(1 +Bo)_Rolp, the non-dimensional frequency

92 as o)/_(1 +Bo)_/pR3o, and the non-dimensional wave height H as il]/Ro. After cancelling the

common factor exp(ic0t) from all the equations, the non-dimensional form of the equations are:

V2_ = 0 in V (4.4-18)

_- = 0 on W (4.4-19)

0_

92H = _- on F (4.4-20)

Bo --_-_R-_ R2002 _R 2 R2 -_ =(l+Bo)922_onF (4.4-21)

• OH av --ag smyc_--+ -_-cosyc H - 0 at S =S_ (4.4-22)

The non-dimensional slosh force amplitude is:

F {f__'-- I (2K"Rc sin X - c°s Y_)c°t _'_IH_} (4.4-23)= rc92(1 +Bo) _[R=R R,,dZ- (1 +Bo)f_

where as before a bar over a quantity means that the 0 dependency has already been removed.

Equation (4.4-23) clearly shows that the force components caused by surface tension (i.e.,

proportional to the wave height He) can be significant when the Bond number is small.

4.4.6 Equivalent Mechanical Model

The dynamics of linear sloshing can also be represented exactly by an equivalent mechanical

model [1]. An appropriate model is a pendulum of length l, that has a mass m, which represents

the liquid fraction that participates in the fundamental mode of the sloshing, and a rigidly-attached

mass which represents the rest of the liquid. (The mass participating in the higher frequency sloshing

modes is usually negligible.) However, in contrast to normal sloshing, the pendulum of the

low-gravity model must be attached to the tank through a torsional spring k, which represents the

stiffening effect of surface tension. From the non-dimensional process described in the previous

section, the slosh natural frequency is expressed as:

0) 2 = 922[(1 +Bo)_/pR_] (4.4-24)

whereas the pendulum frequency is:

2 = k,/(m,12)+g/1, (4.4-25)

Since these two frequencies must be the same for dynamic similarity, the parameters of the pendulum

can be seen to be:
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I, = Ro._ 2 (4.4-26a)

2 2 3

= = _Rom,/pRof_ (4.4-26b)k, D am, l_/pR o 2 3 2

Note that the ratio of the spring moment to the gravity moment, k, / m,l,g, exerted on the pendulum

pivot is equal to 1/Bo, and thus becomes negligible when Bo is large; that is, the mechanical model

reduces to the usual high gravity form when Bo is large.

The slosh mass m, can be computed from the amplitudes of the slosh force and liquid kinetic

energy, as can be seen by considering the equivalent development for the mechanical model. For

the model, the amplitude of the force when the pendulum is undergoing free oscillations is

F,,on, t = m, o32Xo, where Xo is the amplitude of the oscillation, and twice the kinetic energy is

2KE,,,_,t = m, o32x_. The slosh mass is therefore equal to the ratio of the force squared to twice the

kinetic energy, a result that is independent of the arbitrary amplitude Xo. The slosh mass can thus

be computed by forming this ratio for the liquid. Twice the kinetic energy of the liquid is:

2KE = pf f  (a /an)aa (4.4-2?)

.f

where the integral is evaluated on the free surface. The combination of Eq. (4.4-23) and the

non-dimensional form of Eq. (4.4-27) then gives an expression for the slosh mass of the mechanical

model:

[(2KcRcsinx-c°syc)c°ty_]Hc[2/ s_-(-_+_j fo_--_ )RdS
(4.4-28)

m s

Although not developed here, an expression for the location of the pendulum pivot can be determined

similarly from the slosh moment exerted on the tank. It is included, however, in the computer

programs used to make numerical predictions.

4.4.7 Integral Formulation

Equations (4.4-18)-(4.4-22) completely describe linear sloshing for the stated assumptions.

They are, however, not solvable in closed form except when Yc= 90" and then only for tank shapes

that are coordinate surfaces. Hence, an approximate analytical method or a numerical method is

needed. Most such methods apply only to the particular set of equations for which they have been

developed and cannot be generalized. The solution method can be made much more amenable to

changes in the surface physics assumptions by transforming the basic equations to an integral

function form. The functions that minimize the integral are the desired solution. The appropriate

integral can be derived by considering the kinetic, gravitational, and surface energies of the sloshing

[25], or by partial integration and combination of Eqs. (4.4-18)-(4.4-22). The integral is:
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fff ffI(_,H) = _(1 +Bo)_ V_. V(I)dV-(I+Bo)_ 2 ((I)H)dA r
F

+2_f_-(_H_2 (l_H'_2 (I+I)H2-BO(_s]H2]dAF (4.4-29)CLt S)+( NJ +/R, R#

_!nJ[ R (av ,2 s_ny_--_c°sy_--_]H]s:sdO

This formulation has the additional advantage that, if trial solutions for H and • can be derived

from any convenient method, the actual sloshing potential can be determined by using the trial

functions to minimizeI(_, H). The trial functions do not necessarily have to satisfy all the boundary

conditions. The biggest advantage is, however, that an improved contact line condition can be

treated by modifying the line integral in Eq. (4.4-29), without changing the solution method.

4.4.8 Structural Finite-Element Simulation

A finite element structural code was selected as the general method of finding trial solutions

of Eqs. (4.4-18)-(4.4-22), for two reasons: (1) such codes can easily model the irregular and

three-dimensional shapes that are typical of low-g liquid geometries, and (2) expertise in the use

of such codes is widespread.

By suppressing all the displacements of an elastic body but the x-component U, a structural

finite element code can be forced to solve the following field equation [26]:

(_.+2G'_UG1"_"£_= _"_-,_ "-_-.2 _[_-75-S,, _-'_"_,)v. +,.r +v + ..,_,,,.,,,.r+v.,,,,_U_U _.+G(_U _U) I+G_y,,=GP,_U_t _ (4.4-30)

where _. and G are elastic constants, _ is the body force, and p, is the material density. By arbitrarily

choosing _. = -G and Or. = p, = 0, Eq. (4.4-30) can be further reduced to:

a2u Yu Yu

_x2 +-_y2 + bz 2 - V2U =O (4.4-31)

which is the desired governing equation for potential flow, Eq. (4.4-1) or Eq. (4.4-18).

A reactive traction force can be applied at any surface node (i.e., the nodes at the free

surface or at the tank walls). The general form of this force is:

_ _ a 3 _t a +GAI, bn alU +a2-_-+ -- a4 (4.4-32)

where Az, is the surface area of the finite element in question. Equation (4.4-32) will be used to

simulate the slosh boundary conditions. For nodes on the tank walls, the no-flow boundary condition

can be treated exactly by choosing al = az = a3 = a4 = 0 since this makes bU/On = 0 at the nodes.

However, the boundary condition of constant pressure at the free surface cannot be treated so easily.
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The best feasible approximation to the free surface condition is to set at = a2 = a_ = 0 and to choose

a3 (which is a mass-like parameter) as a representative value of all the terms within the square

brackets in Eq. (4.4-8b); this choice makes OU/On proportional to ---_U/Ot 2, which is at least of the

same form as Eq. (4.4-8b). [Since the a_ must be calculated in advance, they cannot depend on U,

but this is what would be required to make Eq. (4.4-32) exactly the same as Eq. (4.4-8b).] The

boundary condition that is actually applied to the nodes on the free surface is therefore:

au
-ffff = -(I + 8o)M(S) (4.4-33a)

or, after eliminating the exp(if2x) factor:

0---U-U= (1 +Bo)f22M(S)U (4.4-33b)
ON

where a3 = (l+Bo) M(S) is the specified distribution of fictitious masses at the surface nodes and

the factor l+Bo is included for analytical convenience.

Using the values for the al determined in this way, the structural code will yield a set of

trial potential functions, say Ui for i = 1,2,3 ..... K, and corresponding trial eigenvalues f22. The

velocity potential for low-g sloshing is then expressed as:

g

tb = Y. b_U_ (4.4-34)
i--I

where the bi are arbitrary parameters that must be chosen to minimize the integral, Eq. (4.4-29).

Because the Ui trial functions identically satisfy Eqs. (4.4-18)-(4.4-20), the minimization process

is simplified considerably. In addition, M(S), as discussed below, will be chosen to satisfy the

contact line condition, Eq. (4.4-11), which further simplifies the minimization process. The result

is that Eq. (4.4-29) reduces to the simpler form:

S c

b dR
fo _ j{IBoRl__)__lRffff ) 1 (1 1 +Bo_i}a-ff,

for i = 1,2,3 .... K, evaluated on the free surface.. Integration with respect to 0 has already been

performed. From Eq. (4.4-33), the O-Ui/ON terms in Eq. (4.4-35) can be replaced by the corresponding

(1 +Bo)MD2-ff_ terms. The integration can therefore be performed readily using only the nodal

values Ui along the line 0 = 0 ° (i.e., without any need for numerical differentiation of U_). Equation

(4.4-35) is a matrix eigenvalue problem which yields the non-dimensional slosh frequency f_2 and

eigenvectors bi. For cases when the trial functions cannot be made to satisfy the contact line

condition, the contribution from the appropriate form of the line integral in Eq. (4.4-29) must also

be included in Eq. (4.4-35).
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4.4.9 Mass Distribution, M(S)

In common with most integral-approximation solution techniques, it is relatively easy to

insure that the numerical method predicts natural frequencies, or eigenvalues, with good accuracy.

It is more difficult to insure that mode shapes, or eigenvectors, are predicted accurately. Nonetheless,

it is important to predict the mode shapes accurately, because, as shown by Eq. (4.4-23), the slosh

force, and therefore the slosh mass, is a function of the point value of the wave amplitude at the

wall rather than on an integral average. Equation (4.4-20) shows that the wave shape is proportional

to the value of the normal derivative of bU/3N of the trial mode U evaluated at the free surface, and

Eq. (4.4-33), shows that the choice of the mass-distribution function M(S) has a strong influence

on bU/bN. Hence, the selection of M(S) is a critical part of the numerical method.

There are several conditions that M(S) should satisfy to make the trial functions U a good

approximation to the true potential _. Since the wall is impermeable, 3U/3N is identically zero on

the tank wall; thus, if To were also zero, continuity would require that bU/_N on the free surface at

the contact line should also be zero.. For numerical work, Tc cannot be chosen to be exactly zero

but it can be chosen to be small. Consequently, 3U/_N on the free surface at the contact line should

be "small," and the first requirement on M(S) is that it have a small numerical value at S = So. By

symmetry, both U and the wave amplitude are zero at the centerline of the tank S = 0. Hence, the

wave amplitude must have a maximum between the centerline and the wall of the tank. Thus, the

second requirement on M(S) is that it must cause the wave to have its maximum amplitude

somewhere between S = 0 and S = So. A mass distribution that satisfies both requirements is:

M(S) = 1 + e - (S/Sc)" (4.4-36)

The small parameter e determines how closely bU/3N approaches zero at the contact point, and the

exponent m helps fix the overall shape of the wave.

The parameters e and m must be interrelated in order to satisfy the contact line condition,

Eq. (4.4-22). To derive this condition it is assumed that U is proportional to S for the fundamental

mode (which is known to be approximately true for high-g sloshing and, as shown by the following

numerical examples, is also true for low-g sloshing). With this assumption, Eq. (4.4-22) can be

manipulated to give:

{ sin?c } m (4.4-37)
e = Sc [(dWdS) cos _--(dz/dE)] + sin _,,

The term in curly brackets can be computed directly from the shape of the free surface. Equation

(4.4-37) is not correct for the higher order trial modes, since they are not even approximately linearly

proportional to S. Fortunately, the contact line is always satisfied reasonably well when _,_is small,

so the discrepancy between e and m for the higher modes is not a serious limitation.
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4.4.10 Numerical Examples

Several numerical examples were computed for a spherical tank to demonstrate the use of

the analytical and numerical methods described above. To begin the calculations, a FORTRAN

computer code was written to predict the equilibrium free surface shape F(S) by numerically

integrating Eqs. (4.4-12) and (4.4-13), as a function of Bo, contact angle, and fill percentage. This

computer code is described in Appendix B. Predictions were made for Bond numbers of 1 and 2,

fill levels of 25%, 50%, and 78%, and a contact angle of 5". Figure 4.4-3 shows the predicted

equilibrium surfaces. (7c > 0 was chosen because a contact angle of exactly 0" cannot be treated in

the finite element structural code. The reason for not choosing Bo = 0 as an example case will be

discussed later. The 78% fill level was chosen, rather than the obvious choice of 75%, because for

Bo = 2 the lowest part of the surface coincides with the center of the tank, r = 0, z = 0.)

A pre-processor (GIFTS) was used to compute the nodal coordinates for the finite elements

of the structural simulation, using as input the tank shape and the free surface shape F(S) predicted

by the FORTRAN code. ADINA, a commercially available structural code, was used for the

example simulations, but other codes, such as NASTRAN, would have been equally suitable. The

finite element model is shown in Figure 4.4-4. Because of the cos 0 dependency of the desired trial

modes, only one-quarter of the tank had to be simulated, with the lateral surface aligned with 0 = 0 °

being a no-flow boundary OU/ON = 0, and the lateral surface aligned with 0 = 90 ° being an

anti-symmetrical boundary U = 0. It was found from preliminary numerical examples that 20 - 25

nodal points along the 0 = 0 line were more than sufficient to ensure convergence.

All the wave shapes of the predicted trial modes were visualized with the aid of a graphical

post-processor in order to select the desired subset of cos 0 modes from the complete set of

cos(2N+ 1)0 modes which satisfy the imposed conditions for the one-quarter tank model.

Generally, three such modes were selected. A QUICK BASIC computer code was written to perform

the numerical integration of Eq. (4.4-35) and to compute the actual sloshing modes and the

parameters of an equivalent mechanical model; this code is also described in Appendix B.

Numerical experimentation was required to find suitable values for the parameter m. Wave

shapes predicted by previous finite difference analyses [20] allowed a reasonable starting value to

be chosen for some cases, such as m = 2.5 (and e = 0.1) for a 50% full tank with Bo = 1. An iterative

process was used to refine the starting values; the first set of trial functions was used to determine

an estimate of the true wave shape, from which a second estimate of rn and e was obtained, and so

on. In practice, only one or two iterations were required. Perhaps an even better procedure would

have been to use the f'LrSt estimate of the wave shape to determine a new, discrete distribution of

M(S) for the second and later iterations, rather than continue to use Eq. (4.4-36); however, this

procedure was not used for these example numerical calculations.
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Figure 4.4-5 shows typical results for the trial mode predictions, in this case forBo = 1 and

50% filling level. The corresponding trial eigenvalues f_ were 0.4565, 1.5375, and 2.8853. The

fundamental low-g slosh eigenvalue for this case was computed to be f_2= 0.7064 and the

corresponding eigenvectors were bJbl = 0.0158 and b._/bl = -0.0028. The eigenvalue of the second

slosh mode was computed similarly to be f_2 = 14.306 and the eigenvectors were bllb2 = 0.2611

and b3/b2 = -0.0147. Figure 4.4-6 shows the computed slosh wave heights HI and Hz for this case,

along with the wave heights (_UI/_N)/_ and (_U2/_N)/Da of the fin'st two trial functions, all

normalized to have a peak amplitude of one.

TABLE 4.4-1. SUMMARY OF LOW-G SLOSH PARAMETERS

FOR A SPHERICAL TANK

Bo=l

Bo =2

no _oo

Note:

Fill % o_2/(1 + Bo)_/pR3o _2/(g/Ro) mslmtiq,,i a lJ2R o k,/oR_

25 0.667 1.335 0.210 0.749 0.330

50 0.706 1.413 0.200 0.708 0.593

78 1.013 2.026 0.130 0.494 0.419

25 0.738 1.106 0.308 0.678 0.437

50 0.816 1.228 0.250 0.613 0.642

78 1.221 1.832 0.168 0.410 0.450

25 1.299 1.299 0.745 0.385 0.601

50 1.573 1.573 0.580 0.318 0.772

78 2.193 2.193 0.350 0.228 0.521

4 3

muq,,_ = _ repRo x [filling fraction]

Table 4.4-1 summarizes the computations of the fundamental slosh frequency and the

mechanical model parameters, together with previous results [1] for high-g sloshing (i.e., for Bo =

oo). For comparison purposes, the predicted low-g frequencies are also presented in the conventional

high-g non-dimensional form o32/(g/Ro). As can be seen, the non-dimensional eigenvalue

f22 = 032/(1 +Bo)6/pR_ for a given fill level decreases as Bo decreases. From physical reasoning,

it is expected that the eigenvalue would be exactly zero forBo = 0 when Yc= 0; for these examples,

the contact angle was 5 °, so _2 is probably not quite zero for Bo = 0, but the excessive amount of

finite element computations required for Bo = 0, for which the static free surface is nearly a total

spherical bubble, prevented this conclusion from being verified numerically. It should be noted
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that _2/(glR,, ) does not decrease monotonically as Bo decreases but fin'st decreases and then shows

a slight increase for Bo = 1, as a result of the changing interaction of the stiffening effect of surface

tension and the softening effect of the increased wave length, compared to a high-g slosh wave.

The predicted low-g slosh masses shown in the table are much smaller than the

corresponding high-g masses and decrease as Bo decreases as a result of the increasing influence

of the term proportional to Hc in Eq. (4.4-28). The pendulum length increases significantly as Bo

decreases. Since the pendulum attachment point is the center of the tank (for the physical reason

that liquid cannot be set in motion in a spherical tank by changing only its angular orientation), the

line of action of the pendulum mass can be outside the tank when Bo is small; that is, l, > Ro.

Experimental results for low-g sloshing in spherical tanks [6, 27] are limited to the range

Bo > 10 and ?c = 0, so a direct comparison cannot be made with these predictions. The trend of the

data indicates that o_2/(g/R,,) decreases as Bo decreases, which is thus in agreement with the trend

shown in Table 4.4-1 forBo > 1. The trend of the experimental slosh masses is also in agreement

with the predictions. Furthermore, the frequencies given in Table 4.4-1 agree fairly well with those

predicted by a previous finite-difference numerical analysis [20], although the results in [20] are

consistently slightly smaller;, for example, for Bo = 1, the predicted f_2 given in [20] is 0.619,

compared to 0.794 by the present method. The slosh masses given in [20] are negative forBo less

than about five, because of an error in the slosh force analysis, and thus cannot be compared to the

present results.

4.5 Spherical Pendulum Rotary Slosh Model

4.5.1 Background

It has long been recognized that for liquids in symmetrical tanks, there is a strong tendency

for rotational motion to occur throughout the steady acceleration range, even though the excitation

to the tank may be planar. Although confirmation of this tendency under controlled experiments

for low gravity in orbit remains yet to be accomplished, Peterson [28] has indicated its presence

even in suborbital experiments conducted in parabolic flight trajectories. Thus, analytical modeling

of the rotary slosh problem and its partial verification through earthbound experiments is an essential

prelude to design of orbital experiments whose objective is the final confirmation of this complex

fluid behavior.

Development of a prediction for rotary slosh via hydrodynamic theory has not yet been

accomplished. However, insight into the problem has been sought through studies of a spherical

pendulum, which has been recognized as a potential analog for rotary liquid slosh. Nevertheless,

even this approach quickly results in a relatively complex dynamics problem. Significant analytical

study of the spherical pendulum has been reported by Miles [29]. Some experiments reported by

Tritton [30] show that this classical system can display a variety of motions, including chaotic

responses for certain conditions. On the other hand, Kafia [31] has shown that the most significant
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amplitude rotary liquid slosh in a scale model Centaur tank is at least periodic in nature, and can

be modeled by a compound system which contains both a spherical and a linear pendulum. This

report presents an extension of the latter work, and includes improvements to a harmonic balance

model, which can be used to develop approximate dynamic parameters for both the spherical and

the linear pendulums, and to a numerical approach which can be used to refine these results to more

exact values. Finally, the effects of low gravity on this type of response are also explored.

The physical configuration for the compound pendulum rotary slosh model originally

reported by Kafia [31 ], is repeated for convenience herein in Figure 4.5-1. The major developments

of this report deal with the spherical pendulum, although the results will affect parameters for the

linear pendulum part of the model as well. A summary of pertinent expressions which allow

determination of parameters for the spherical pendulum will fin'st be given.

The general dynamic equations for the spherical pendulum were derived as:

+ m. _cosO sinO+- +_cos_cosO = 0 (4.5-1a)
l -

and

.I

.... x_sin0+2_0cos0+2co, sinO-Tsin_b = 0 (4.5-1b)

wherein there has been included:

=g fS'Wl _- 2C°,,mco C, (4.5-1c)co"=7' m=_, ' _=2mco,g

Expressions for the cross-axis effective weight Wc (co) and the in-line effective weight W,(co)

were derived as:

We(co) cos co/ =

and

developed.

x°co2 sin 0 sin ¢ - 2co0 cos 0 cos

- 0 cos 0 sin xl/] (4.5-2a)

13_Wt=/[_2 sin 0 cos _ + 2co0 cos 0 sin __ 0 cos 0 cos _]W,(co)coscot = Xoco t.

+ 131Wl cos cot (4.5-2b)

A harmonic balance approximate solution to Eqs. (4.5-1a, 4.5-1b, and 4.5-1c) was first

Radial force equilibrium resulted in the expression:
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taneo-_=sineo = T_T)cos_o

in which

tO

to.

(4.5-3a)

(4.5-3b)

Circumferential force equilibrium resulted in the expression:

= + sinOo CW
(4.5-4)

A corresponding harmonic balance expression for the complex cross-axis weight was

(4.5-5a)

(4.5-5b)

developed from Eqs. (4.5-2a and 4.5-2b) to result in:

.2

__ _0 .W,(to) = -r51W, I sinOe i' + 2tof$1W, l cosOe '(v÷i)

X X

eo iJ

+ [5,w, lOcosOe i'_..+ _,W, x

X X

in which there was included:

= tot - (% + ¢0) = _ - 3'0

and

tanYo = _l (4.5-5c)
l__a2, = -_-

From this, there was defined along the real cross-axis a co-phase component Wcc as:

Wcc= [5,w,[ losinOosin¢o+COS2OoF,(cx)sin_] = W,(to) (4.5-6a)

and along the in-line axis a quadrature-phase component Wco as:

-131Wl[/sin 0o cos ¢o + cos2 0oF,(a)cos _] =rJlwl-w,(tO ) (4.5-6b)WcQ=

where WcQ is taken as positive to the left. In these expressions, there was also used:

k o = 2(% + ¢o) + eo (4.5-7a)

and

a,
F,(a) = , (4.5-7b)

[(1 - or2)2+ 4_1ot21i
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Thedistortionangleeowasincludedto allow thependulumweight ratio 131to remainin

therealisticrangebetweenzeroandone.

In [31], developmentof modelparametersfrom theaboveequationswasaccomplishedby

thefollowing steps:

1) Circumferentialdamping _ with correspondingposition lag angle _o and steady

deflection0owereobtainedby simultaneousiterationon Eqs.(4.5-3and4.5-4). The

condition was that _0matchexperimentallyobservedvalues,where they could be

discerned(i.e.,for a > 1.0).For 0_< 1.0,only guesseson_0couldbemade,since00was
too smallto isolate.

2) Thesevaluesof _, _0,and00werethenusedinEqs.(4.5-5,4.5-6,and4.5-7)tocalculate

cross-axisweightcomponents.For this, anassumedvalueof radial damping_1 and

errorangleeowerevarieduntil thecalculatedweightcomponentsmatchedthosewhich

weremeasuredfor a givenexcitationfrequencyduring thesloshexperiments,andthe
resultingweightratio 131wasarealisticvalue.

With theabovesteps,all parametersfor thesphericalpendulumwerefin'stdeterminedfrom

theapproximatesolution.Thereafter,thedampingvalues_, _ andnaturalfrequencyco,wereused
in Eqs. (4.5-1a,4.5-1b,and4.5-1c)for a numericaltime-stepsolutionfor 0(t) and_(t). These

solutionswerethensubsequentlyinput toEqs.(4.5-2aand4.5-2b)to obtainmoreaccurateweight

componentsasfunctionsof time. However,indoingthis,theresultswerecomparedonamagnitude

basisonly, with phasebeingignored.

Theprimary objectiveof thepresentwork is to developmoreaccurateparametersfor the

sphericalpendulumpartof thesloshmodelbyuseof similarnumericalsolutionsof thegoverning

equations. However,both magnitudeandphaseof the cross-axisweight componentswill be
included. As a result,parametersfor thelinearpendulumpartof thecompoundsloshmodelwill

also be shownto be affected. Thus,a moreaccuratesloshmodel which matchesall dynamic

propertiesof thecross-axisandin-line weightswill result.

4.5.2 Revised Approximate Model

As indicated in the previous section, judicious choices of damping parameters must first be

made for the spherical pendulum before a direct numerical solution of the governing equations can

be attempted. These values must be such that the solutions for 0(t) and _(t) will produce cross-axis

weights which can be made to match the experimental slosh data when a plausible mass ratio 131is

included. Therefore, to assure that judicious initial values are selected, the harmonic balance

approximate solution is still first used to estimate values of damping, deflection, and position lag

angles. However, in the present work, the model is revised so that eo is set to zero in Eq. (4.5-7a).
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By further search, it was found that plausible solutions for 13_indeed could be obtained by significant

revision of the damping values _ and _. Otherwise, the approximate parameters are all determined

using the same detailed approach described previously in Steps 1 and 2.

The results obtained from the revised approximate model with eo = 0 are shown in Figures

4.5-2 - 4.5-5. Note that numerical solution results are also given, but will be ignored until later.

Here the approximate results are presented as continuous solid and dashed lines, although it is

understood that values were obtained only at frequencies where experimental data were available.

By comparing these results with those presented in [31], it can be seen that for values of ot < 1.0,

significantly greater values of damping for both _ and _ are necessary to develop a plausible

model. At the same time, the steady deflection angle 0o was not changed very much, but the values

of position lag angle _b0and mass fraction 13_change significantly. Even so, they remain in a plausible

range (i.e., 13_< 1.0). The net result of this development is that a better model of the experimental

slosh data can be achieved, as will be described further with the numerical approach.

4.5.3 Numerical Model

As previously indicated, the objective of the numerical model is to seek solutions for 0(t) and

¢(t) so that matching of all dynamic properties of the experimental slosh data can be achieved.

Since the spherical pendulum alone produces the cross-axis weights, it is given attention fLrst, and

then the linear pendulum is established by means of the in-line weights. However, in developing

the approach to the spherical pendulum, it is first appropriate to provide some preliminary discussion

about the expected forms of the solutions and to modify the cross-axis weight expressions.

Forms of Solutions

Steady state polar solutions for 0(t) and _(t) from Eqs. (4.5-1a and 4.5-1b) are of elliptical

shape similar to the example shown in Figure 4.5-6a. This polar plot represents counter-clockwise

motion, as will all the solutions considered in this report. (Discussion of clockwise solutions will

be given in the conclusions). Furthermore, a modified notation (compared to that used in [31 ]) has

been employed in Figures 4.5-6a and 4.5-6b in order to allow more generalization, and to emphasize

in which plane a given variable is defined.

Solutions of interest are periodic in tot, and in order to study the details of a single period one

can pick an initial reference time:

to = 2r_n/o3 (4.5-8)

where n is an integer. By referring to Figures 4.5-6a and 4.5-6b, we can define:

_,(t) = tot - _bo(t) (4.5-9a)

and

_b,(t) = _,(t) - _o, = tot --_0_(t) (4.5-9b)
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where

_01(t) = _0(t) + _0, (4.5-9c)

Furthermore, combining Eqs. (4.5-9b) and (4.5-9c) there results:

_,(t) = o3[t - _bo(t)/o3] - _)0_ (4.5-10)

From these equations, we further note that at t = to:

_o(t0) = 0 and O01(t0) = _0, (4.5-11)

Note that if the solutions of Eqs. (4.5-1 a and 4.5-lb) are such that the polar plot in Figure

4.5-6a becomes circular, then Eq. (4.5-10) takes on the more familiar monotonically-increasing

straight line form, in which O0(t) is zero. However, if the solutions form an elliptical polar plot as

shown in Figure 4.5-6a, it will be shown later that O0(t) is a periodic function superposed on the

otherwise straight line _,(t) = cot - _0_.

Modification of Cross-Axis Weight Expressions

It is now appropriate to use Eqs. (4.5-2a and 4.5-2b) to develop effective weights as

functions of time so that comparisons with experimental data can be made. However, as given,

these expressions include some restrictions which were useful for the approximate model solution,

and will be eliminated for the numerical model. In particular, the last two terms in the brackets on

the right-hand side of Eqs. (4.5-2a and 4.5-2b) were defined in terms of a rotating pendulum whose

plane of oscillation lags at a constant angle 70, relative to the space-plane angular displacement

_,(t). As indicated in Figures (4.5-6a and 4.5-6b), it was assumed that:

To, = _,(t,,) = 70-_o, (4.5-12)

where dh(t,,) is the angle between the apex of the ellipse and the x-axis. To account for coupled

radial [i.e., 0(t)] and rotational [O(t)] effects, the angle %(0 was defined by Eq. (4.5-5b) as:

_,(t) = cot - [To + _0(t)] (4.5-13)

and using Eqs. (4.5-9a, 4.5-9b, and 4.5-9c) there results:

%(0 = _,(t) - 70 + _0, (4.5-14)

Use of this approach only partially accounts for coupling effects that are present, and will now be

generalized for development of the numerical model.

Equations (4.5-2a and 4.5-2b) are considered directly for a pendulum which is rotating

with variable angular velocity _(t) and with a plane of oscillation which makes the angle _,(t)

relative to the excitation plane. For this, Eqs. (4.5-2a and 4.5-2b) become:

--- W,l F" l
Wc(t)coscot = _ [(_ sin0sin_-2_0cos0cos_-ecos0sin(_J (4.5-15a)

and
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2 .. q
W, (t) cos cot - [5,W,I F_ sin 0 cos _ + 2_)0 cos 0 sin _ - 0 cos 0 cos _bJXoco2 [.

+ _1W1 cos cot (4.5-15b)

In which it is understood that _ = d_,(t) and 0 = 0,(t) are each calculated from coupled numerical

time-step solutions of Eqs. (4.5-1a and 4.5-1b), and We(t) and W,(t) are vectors which have a

time-phase relative to cos cot.

Thus, we have:

__. --. e-j_Wc(t)coscot = I W,(t)l coscot (4.5-16a)

and

.... _._. e-j_W,(t)coscot = I W,(t)l coscot (4.5-16b)

where _._ and _ are lag angles for the respective weight components. These lag angles are found

by:

_._ = co(tc - to) (4.5-17a)

= co(t, - to) = _._ + _2 (4.5-17b)

where to is given by Eq. (4.5-8) and t, and t, are the times fora maximum occurrence of the respective

weight just succeeding the reference time to. (Note that ifa preceding maximum occurrence is used,

then _ becomes a lead angle rather than a lag angle).

When the cross-axis weight solutions are developed according to Eqs. (4.5-15a and

4.5-15b), it is found that a time lag error exists relative to the experimental weight measurements.

This error is found to be dependent on the variation of#0(t) with time. In view of Eq. (4.5-10) we

note that:

W,[_,(t)] = W,{_,[t - _o(t)/co]}

Guided by this, we set:

t o = to- _o(t_)/co (4.5-18a)

This results in a lag angle:

_'o, = co(t_ - to) = _ + _o(tc) (4.5-18b)

Therefore, since the cross-axis weight is expressed as:

-W_(t) = Wcc-jWco

there results:

Wcc = I W_(t)l cos _'o, and Wco " = I W_(t)l cos(_'o, - n/2) (4.5-19)
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Similarly for the in-line weight:

w,(t) = W,R-jw, 

there results:

W,R = I W,(t)l cos_'0,

where

and W,_ = I_,(t)l cos({'o,- rd2)

_'o, = re(t, - t'o) = _ + _o(tc) = _'o_ + rd2

(4.5-20a)

(4.5-20b)

Spherical Pendulum Procedure

The procedure for development of model parameters will be described in steps along with

results for a specific frequency point. For illustration, the point at o_= 0.9720 was selected, which

includes the following experimental slosh data (see [31]):

Wcc = 108.0 lb(480.4N) and WcQ = 59.57 lb(265.0N)

1) For this case, Step 1 of the approximate model provides values of damping as

= 0.017 and _1 = 0.022

These values appear as part of the solid and dashed lines, respectively, in Figure

4.5-2. However, after trial in the rest of the steps to follow, it was found that even

more damping was necessary to produce sufficient cross-axis force. Therefore, these

values were increased to:

= 0.025 and _ = 0.045

so that _ = 0.090

2) The above values of damping were used along with the DYSIM (Dynamic

Simulation) computer program to compute 0(t) and ¢(t) from Eqs. (4.5-1a and

4.5-1 b). This program is based on a fourth-order Runge-Kutta numerical integration

scheme. The results are plotted for reference in Figures 4.5-7, 4.5-8, and 4.5-9 for

the time period 45 to 50 seconds. This time was sufficient to establish steady-state

after using the following initial conditions:

0(0) = 0.0038 radian _(0) = -1.534 radian

0(0) = 0.000 rad/sec ¢(0) = 2.7300 rad/sec

In this and all cases developed herein, the time step increment was 0.002 sec.
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3)

4)

5)

6)

For convenience ¢0_(t) was also computed from Eq. (4.5-9b) as:

_ol(t) = cot - _,(t)

and plotted in Figure 4.5-10. It is clearly seen to be a periodic function for this case.

From the above results, the following parameters are obtained from Eqs. (4.5-8 and

4.5-11) for n = 21 periods:

to = 48.331 sec _o, = 0.42 rad

The above results for 0(t) and _(t) are now used to compute Wc(t)coscot and

W, (t) cos cot from Eqs. (4.5-15 a and 4.5-15b). The results for the periodic component

filtered at frequency co are plotted in Figures 4.5-11 and 4.5-12, respectively. For

this computation, the value of 131is adjusted so that the magnitude of l Wc(t)l equals

that for the experimental data:

I

IW_(t)l = [W_c + W_Q]2 = 123.3 lb (548.4 N)

This results in 131= 0.160. Furthermore, from the results in Figure 4.5-11 we obtain

tc = 48.162 sec. With this and the results from Figure 4.5-10 used in Eq. (4.5-9c),

we obtain ¢o(tc) = 0.94 radian. Therefore, from Eq. (4.5-18a) we obtain t'o = 47.987

sec, and from Eq. (4.5-18b) there results _'0_ = 27.4°, which agrees with the

experimental value.

Thus, a very close matching of both magnitude and phase has been achieved for the

cross-axis weight data, and has resulted in a very plausible value for the weight ratio

13_. Generally, this is accomplished only after some additional adjustment of the

damping ratios, as was indicated above in Step 1.

The in-line components for the spherical pendulum are obtained from W,(t)cos cot,

which is plotted in Figure 4.5-12. Note that the scale on this plot has been adjusted

according to 131= 0.160, as found in Step 5 above, so that Figure 4.5-12 also provides

IW,(t)l = 107.7 lb (479.1 N). Thetimet, = 48.70 also is established from thisplot.

Therefore, from Eq. (4.5-20b) the in-line lag angle is obtained as _'o, = 111.8 °. From

this and Eq. (4.5-20a), there results W,R =-40 lb (177.9 N) and W,t =99.5 lb

(442.6 N).

This information is required for determination of the linear pendulum parameters,

as will be shown later.
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Spherical Pendulum Results

Spherical pendulum model parameters were similarly calculated for several other frequency

points, and the results plotted as discrete points in Figures 4.5-2 - 4.5-5. Generally, it can be seen

that the resulting damping ratios _ and _1 and mass ratio 131all are higher than the corresponding

values estimated from the approximate model, only for the frequency range o_< 1.0. This could be

expected, since for ct> 1.0 the polar plots rapidly become circular, and the approximate and

numerical solutions become more identical. Even so, the approximate values are useful in all cases

to use as initial values for numerical model development. Note also that the steady deflection angle

0o is essentially the same for both cases (for the numerical model 00 is taken as the average value

from the 0(t) - plot). Finally, from Figure 4.5-4, it can be seen that the values for position angle _0

also deviate somewhat only for (x < 1.0. In this case, t_o is taken as:

i.e., the value for _0_(t) at t = to. For ct > 1.0 and more circular orbits, _b01(t) becomes constant and

_b(t) in Figure 4.5-9 becomes a straight line.

Some further examples of types of polar plots are shown in Figures 4.5-13 - 4.5-15. Figures

4.5-13 and 4.5-14 show samples of plots from actually developed model data given in Figures 4.5-2

- 4.5-5. From Figures 4.5-7, 4.5-13, and 4.5-14, it can be seen that dramatic changes in the orbits

occur (i.e., in magnitudes and shapes), which correspond qualitatively with what is observed

experimentally in the liquid behavior. These changes result from variation of damping values as

well as frequency. For example, Figure 4.5-15 shows several orbits computed for fixed excitation

frequency (x = 0.972 and circumferential damping _ = 0.017, but with varying radial damping _1.

For large _, the orbit is nearly circular, so that a relatively large cross-axis weight would be

produced. For small _=, the orbit reduces to the limiting case of a linear pendulum, and zero

cross-axis weight results. For this also _b(t0) becomes essentially zero, so that the in-line weight

reduces to that for a linear pendulum with amplitude and phase determined by _1. Furthermore,

the function _(t) approaches a straight line for the more circular orbit, while corresponding results

for the linear pendulum form a stair-step function. In the other cases, the results are similar to those

of Figures 4.5-7 - 4.5-10.

Linear Pendulum Discussion

In [31], the parameters for the linear pendulum in the compound model are developed

totally from the experimental data. Herein, this approach is changed to recognize that for less

circular (i.e., more elliptical) orbits, the corresponding cross-axis and in-line components of the

spherical pendulum are not equal, since _ is not a constant for such orbits. That is Wcc _ W,t and

WcQ _ W,R. This conclusion is evident from the results of the numerical model. Therefore, the

combined system weight equations are now formed as follows:
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wR = w,R + f 2w,+ f 2W,F,(a)cOSVo

W ! = W,, + _2W, Ft.(a) sinvo

where the total complex in-line weight is:

W, = WR-iW,

and

(4.5-21a)

(4.5-21b)

CX 2

F,.(a)=
[(1 - a2)2+ 4_2a2] _

(4.5-22a)

2a_

tanT02 - l_a2 (4.5-22b)

Equations (4.5-21a and 4.5-21b) indicate that the total in-line weight is produced by the

two pendulums. The contribution from the spherical pendulum results from the numerical solutions

for W,R and Wa as indicated previously for the spherical pendulum procedure. The contribution of

the linear pendulum results from its amplitude given by Eq. (4.5-22a) and phase given by the angle

V0. However, if there is some coupling between the two pendulums required for matching the
I

in-line slosh data, then there will result:

%2 _: V0

For this case, Vo is obtained from combining Eqs. (4.5-21a and 4.5-22b) to obtain:

Wl-W, 
tan V0 = WR - W,R - _Wl (4.5-23)

Then a coupling difference angle e02 will result such that:

= V0 - %2 (4.5-24)

Linear Pendulum Procedure

Parameters for the linear pendulum can now be developed by means of the above results.

For illustration, the data for the frequency point a = 0.972 will be continued. For this, the total

measured in-line weights (see [31]) are:

W R = 389.61b (173.9N) and Wt = 343.31b (1527.0N)

1) Given the above total measured in-line weight values WR and W / and the in-line

weight components W,R and W,I computed from the numerical model one may then

assume a value for _02. For this case, this damping value will be taken as constant

for all frequencies at:
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= 0.010

With this, Ft.(a) is computed from Eq. (4.5-22a) and )'02 is computed from Eq.

(4.5-22b). For this example:

Ft.(a ) = 16.14 and )'02 = 19.40°

2) Equations (4.5-21a, 4.5-21b) are now manipulated to where 132is eliminated from

them. This results in:

I (WR - W,R) 1 (4.5-25)(W,, - W,t) sinxl/°- c°s_c - Ft.(a)

With the above data, this equation is solved forgo by trial and error. For the example

case, there results:

gto = 30.7 °

and from Eq. (4.5-24) this results in:

_2 = 11.3 °

Thus, a non-zero angle indicates that some degree of coupling between the two

pendulums is necessary to match the in-line weight data. Furthermore, the linear

pendulum mass ratio can then be obtained from Eqs. (4.5-21a) or (4.5-21b) as:

132 = 0.310

Linear Pendulum Results

Further results for the linear pendulum which correspond to the data developed for the

numerical spherical pendulum model are shown in Figure 4.5-16. The resulting mass ratio 132varies

more or less similarly to 131for the spherical pendulum. The coupling angle _2 varies significantly

over the frequency range, which indicates a corresponding large variation of coupling between the

two pendulums, as long as _._ is held constant.

It is appropriate to raise the question of whether this coupling can be reduced to zero

providing that _ is allowed to vary. It was found that this approach led to impossible values of

damping at the lower frequencies. Therefore, for simplicity, the _ constant value was selected.

This may or may not be the optimum approach for every set of experimental data developed.

4.5.4 Effects of Low Gravity

The preceding developments have concentrated on an approach for developing parameters

for a compound slosh model that can match the effective weights measured for liquid motions in a

tank which is subject to a given steady acceleration. The experimental data was acquired in an

earthbound system, and the equations were derived for a spherical pendulum in an earthbound

system. The next logical question deals with whether the model developed can be used to predict
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resultsthatmightbeexpectedin a low gravityenvironmentin orbit. Themethodsdevelopedfor
boththeharmonicbalanceapproximatemodelandthenumericalmodelwill beusedto shedsome

light on thisquestion,by showinghow low gravitycanaffecttheresponseof thecompoundslosh
model.

An immediateeffectof low gravityon botha sphericalanda linearpendulumis that the
naturalfrequencyis dramaticallyreduced.For a liquid, thiseffect is sopronouncedthatsurface

tensionforcesthendominate,ratherthangravityforces,ashasbeendescribedearlierin thisreport.

For apendulumin low gravity, thiscorrespondsto addinga weak,torsionalspringat its support.

Thus,if nootherformsof nonlinearityentertheproblemandif onecanassumethatexcitationwill

still occurin thevicinity of thenaturalfrequency,howeverlow it maybe(i.e., nearct= 1.0),then

theessentialmodelingapproachdevelopedhereinremainsapplicable.However,avery important

effect on the resultswill additionally occur becauseof changesin damping,as the previous

developmentshowsthatdramaticdifferencesin responseof asphericalpendulumoccurfor agiven

frequencywheneither_ or _1changeby onlyslightamounts.Althoughtheeffectsof low gravity

on dampingin agiventankarenotyet completelyunderstood,it is knownthatdampingtendsto

increaseasgravitydecreases[i.e.,Eq. (1.1-1)]. Therefore,thesubsequentdiscussionconcentrates
onwhatcanhappento asphericalpendulumexcitednearct= 1.0,whenthedamping_ and_1 are
allowedto increase.

Equations(4.5-3,4.5-4)whichrepresentpartof theharmonicbalanceapproximatemodel

arefirst usedfor thispurpose.Equation(4.5-3a)wasfirst solvedfor avarietyof positionangles

t_0 for incremented values of frequency ratio near ct = 1.0, and the corresponding values of steady

deflection 00 were noted. This results in the plot shown in Figure 4.5-17. Then, corresponding

values of _ were calculated from Eq. (4.5-4), and the results plotted in Figure 4.5-18. By using

the two figures together, one can estimate what type of responses occur at a given frequency for an

initial value of damping _, and also how the character of the response changes as this value of

damping is increased.

As the previous model developments indicate, generally an increase of damping _ leads

to larger values of t_0, and therefore, correspondingly larger values of cross-axis effective weights,

all of which is independent of _1 only for the approximate model. However, this alone is not the

whole story. As was previously shown, at a fixed value of _ the character of the response also

changes with _ increase. Therefore, use of the numerical model is ultimately necessary for a more

exact determination of response changes that occur due to variations in damping that result from

low gravity.
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Relatingtheseresultstochangesin gravitymaybeaccomplishedbyestimatingthedamping

changeaccordingtoEq. (1.1-1).However,thecomputedvalueismostdirectlyassociatedwith the

radial damping_ in this model. At present,it mustbeassumedthat somesimilar relationship

existsfor thecircumferentialdamping_. Ontheotherhand,theproblemisevenmorecomplicated
thansuchanapproachmayimply. By programmingvariouscombinationsof dampinginto Eqs.

(4.5-1aand4.5-1b),for thesphericalpendulum,it wasquickly foundfromnumericalsolutionsthat

steadystateresponseoccursonlywithin certainregionsof dampingmotherwisedrifting orchaotic

responsesoccur,aspredictedbyTritton [30]. Forthepresentcase,it wasfoundthatstableperiodic

motionscouldbefoundfor therangesof frequency,dampingandassociatedphaseanglesindicated
in Figures4.5-17and4.5-18. However,thesevalueswerefoundonly by trial anderror,andmore

work is required before a better understandingof the behavior is possible. Furthermore,

establishmentof moreaccuraterelationshipsfor both_ and_0_asfunctionsof low-g arerequired

beforeanypredictedresultscanbemeaningful.
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5.0 GROUND-BASED SUPPORTING EXPERIMENTATION

5.1 Introduction

Several different studies were conducted to help establish requirements for flight

instrumentation. The response characteristics of liquid-vapor interface sensors were investigated

by laboratory experiments to determine an appropriate set of spatial and frequency response

requirements; these experiments used non-flight hardware and instrumentation. Load cell designs

were surveyed to determine if designs exist that can measure the small slosh forces anticipated for

a flight experiment. This section summarizes those investigations.

5.2 Ground Tests Of Liquid-Vapor Sensors

5.2.1 Background

The geometric description of the static and dynamic free surface is among the most useful

fundamental information that can be obtained about liquid motions in moving tanks. This is

especially true for low-gravity conditions, since the shape of the free surface slosh wave is the only

evidence obtainable from tests that is directly related to the contact line condition (i.e., to the dynamic

contact angle). In addition, the natural frequency of the motions can also be determined from the

time history of the dynamic free surface location, and the damping can be obtained by the time-decay

of the free surface wave motion after the tank motion itself ceases. All this information obtained

from surface location measurements is needed to validate and improve analytical models and to

acquire fundamental understanding about the relevant surface physics. Thus, it is imperative that

the static and dynamic free surfaces be "visualized" in some way during flight experiments.

The most common visualization method used in laboratory studies of sloshing is a

combination of: (1) cinema or video recording of the free surface motion; and (2) probes that

measure the time hi story of the free surface location at one or more points. Cinema or video recording

is an appropriate method of obtaining a qualitative overview of the motion and of selecting conditions

for further study, while an array of surface probes is an appropriate method of obtaining quantitative

data about frequencies, damping, resonant conditions, etc. For the COLD-SAT flight experiment

defined in Section 3.2, cinema or video recording from outside the tanks is not possible because

the COLD-SAT cryogenic tanks are not transparent; internally-mounted cameras are also not

possible because of the substantial insulation required for the camera and the need for a source of

lighting. For the Shuttle-based experiment defined in Section 3.3, the use of external cameras is

practical and is therefore included in the plan. For both experiments, liquid-vapor interface probes

are proposed as a method to obtain quantitative data.

5.2.2 Liquid-Vapor Sensors

Liquid surface sensors of the type commonly used in laboratory studies of sloshing cannot

be used in the "weightlessness" of low gravity because they depend on the weight of any liquid

adhering to the sensing elements to remove the liquid rapidly when the probes exit the liquid.
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Instead, some other mechanism must be used to remove the adhering liquid so that a time-correlated

signal can be generated which indicates when the sensing element is no longer immersed in liquid.

At least one space experiment has used a temperature sensing element containing an electrical

resistor for this purpose [32]. When the sensor was immersed in liquid, the heat generated by the

electrical current in the resistor was conducted away more rapidly than when it was immersed in

vapor; consequently, the temperature of the sensor was lower in liquid than in vapor, and the change

of temperature thus indirectly indicated when the element entered and exited the liquid. These

kinds of devices have been investigated more thoroughly for the COLD-SAT experiments [33, 34].

In addition, fiber optic devices have also been proposed as liquid-vapor surface sensors [34, 35];

Figure 5.2-1 shows the principle upon which these sensors operate.

Although the temperature response time of most resistive sensors is slow (on the order of

five to ten seconds), the required response time for the slosh flight experiments is not particularly

demanding; Tables 3.2-2 and 3.3-2 indicated that the slosh waves for the two defined space

experiments all have periods greater than 70 seconds. Consequently, the response time of resistive

sensors should be adequate. In laboratory tests, the response of fiber optic sensors is practically

instantaneous; it remains to be shown, however, whether liquid adhering to the probe tip in low

gravity can degrade the performance of the probe.

It is concluded that resistive sensors, and possibly fiber optic sensors, can be adapted to

the requirements of determining the location of the liquid-vapor interface in low gravity flight

experiments. The number and location of such probes required to obtain an accurate resolution of

the shape and motion of the surface were therefore the objectives of the present laboratory

experiments.

5.2.3 Ground Tests of Liquld-Vapor Sensor Arrays

An existing 1/5-scale model Centaur G-Prime tank was available for the laboratory studies.

Water was the test liquid. Near-resonant planar sloshing was excited by oscillating the tank with

a horizontal shaker. The test apparatus is sketched in Figure 5.2-2.

Modified "wheatstone" wave height transducers [36] were used in the tests to simulate the

resistive or fiber optic sensors of a flight experiment. Each such liquid-vapor sensor was made of

a pair of thin insulated conductors, slightly separated, with a short section of each conductor exposed

for contact to water, and connected electrically across part of the resistance in one leg of a wheatstone

bridge. The short exposed section of the sensor was oriented horizontally (i.e., parallel to the static

liquid surface) so that a distinct indication could be obtained of the time when the liquid surface

passed the sensor. An individual probe was composed of four sensors mounted on a thin vertical

rod and separated vertically by one inch (2.54 cm). Three probes (R1, R2, and R3) were constructed

and mounted in the tank on a brace along the tank diameter as shown in Figure 5.2-2. The entire

array of probes could be adjusted angularly relative to the tank excitation direction, and vertically
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to position the sensors at any desired location relative to the static liquid level. About seventy-five

slosh tests (not counting repeats) were conducted for a number of different orientations of the probes

and for three different slosh wave amplitudes. No attempt was made to simulate the curvature of

the static liquid surfaces that will occur in low gravity.

Figure 5.2-3 shows a reproduction of the strip-chart recording of the output of the probe

array from a typical test. When the slosh wave passed upward across a sensor, the sensor went

from a "dry" state to a "wet" state, and there was a consequent abrupt increase of the bridge output

voltage. When the wave passed downward, the sensor went from a "wet" to a "dry" state, and there

was a consequent decrease of the bridge voltage, which was, however, not as abrupt as for the

upward passage since some water adhered to the sensor and later dripped off. The magnitude of

these voltage jumps is related to the sensor sensitivity and calibration, but not to the height or depth

of the wave above or below the sensor.

Slosh frequency -- The time period between successive dry or successive wet indications

for a given sensor, which is, of course, the slosh wave period, was repeatable to high accuracy. As

an example, the average period (derived from the known chart travel speed) for the test results

shown in Figure 5.2-3 was 1.205 seconds, and the maximum variation from one cycle to another,

or between sensors, was 0.005 seconds. The actual slosh period, which was set by the shake table

frequency, was 1.205 seconds. It was concluded that digital sensors are easily capable of establishing

slosh frequencies.

Static liquid level and slosh wave shape m The output of the entire array was available

to establish the static liquid level and the shape of the slosh wave. As an example of one method

that can be used to interpret the sensor data to obtain this kind of information, the test that yielded

the data shown in Figure 5.2-3 will be analyzed. Figure 5.2-4a shows the configuration of the probe

array, which was aligned with the tank excitation direction. The static liquid level was halfway

between the middle two sensors of each probe. The initial uncertainty in the static liquid level

(assuming that there was no visual evidence, such as would be the case for COLD-SATexperiments)

was, therefore, _+0.5 in (1.27 cm) because the level could have been anywhere between adjacent

wet and dry sensors.

Since the sensors at a given vertical level did not all indicate "dry to wet" or "wet to dry"

at the same time, a technique was developed to interpolate the discrete data from each of the four

sensors of a probe to determine a continuous time history. The slosh motion is periodic, so an

appropriate interpolation technique was to fit a least-squared-error sine wave to the data:

r1 =Ao +A_ sin(2rct/x, + _to) (5.2-1)
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Here, rl is the position of the liquid surface relative to lowest sensor of the selected probe, x, is the

period of the slosh motion (1.205 sec for this example), and IX. is a phase shift relative to probe R1.

The parameter Ao is interpreted as the position of the static liquid level above the lowest sensor of

the probe and At as the amplitude of the slosh wave at the radial location of the probe. The data

used to derive the least-squared-error sine wave consisted of: (1) the time (after an arbitrary starting

point) when each sensor went from dry to wet and from wet to dry, and (2) the vertical position of

each sensor relative to the lowest sensor. The time data were obtained from the strip chart recordings

of each test by measuring the length intervals between voltage "jumps" which were then converted

to seconds. As can be inferred from Figure 5.2-3, there was almost no ambiguity in the dry-to-wet

measurements and very little in the wet-to-dry measurements; generally, measurements for three

or four slosh periods were averaged to remove what ambiguity existed. The position data for the

sensors were determined from direct measurements; as indicated earlier, the corresponding sensors

of each probe were at the same vertical position, and each sensor was separated vertically by 1 in

(2.54 cm).

For this example, the results of the interpolation for the three probes are summarized as:

Probe RI: Ao = 1.701 in At = 1.859 in Ito = 0 °

Probe R2: Ao = 1.511 in AI = 1.972 in IX°=-0.06*

Probe R3: Ao = 1.440 in AI = 1.974 in IXo= -0.75 °

The interpolation method established the location of the static free surface (by averaging the Ao

data) as 1.551 in (3.940 cm) above the lowest line of sensors, and reduced the uncertainty in that

position from _+0.5 in (1.27 cm) to _+0.110 in (0.279 cm). The true position is 1.5 in (2.54 cm) to

within the accuracy of the test setting.

The sine waves fitted through the data for each probe are shown in Figures 5.2-5a - 5.2-5c.

The predicted shape of the slosh wave, obtained from the amplitudes Ao and A_ of each sine wave,

is shown in Figure 5.2-5d. Considering the small phase differences IX, between the probes, the

phase has been neglected in this composite wave shape. The predicted slosh wave shape is a

reasonable approximation of the actual wave shape, and in fact, if the static surface level had been

predicted to be flat, the prediction would have been even more realistic. It is apparent that the

sloshing was slightly nonlinear, which was also visually observed during the test. The predicted

value of -_ 2 in (5 cm) for the slosh wave amplitude at the wall was somewhat smaller than the true

upward value of 2.65 in (6.7 cm) and even slightly smaller than the true downward value of_- 2.2 in

(5.588 cm). A Fourier series interpolation scheme could account for the nonlinearity, which would

further improve the estimate of the static liquid position and the wave shape.
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Figure 5.2-6 shows an example of the improved results that can be obtained by using more

sensors per probe. The predictions shown in this figure were actually obtained by combining the

data from two identical slosh tests, but in which for one the army was positioned with the lowest

sensor 0.5 in (1.27 cm) below the static surface (i.e., three sensors were exposed) and for the other

the army was positioned with the highest sensor 0.5 in (1.24 cm) below the static surface (i.e., three

sensors were submerged). This data set thus simulates an array in which there are six sensors along

each probe, equally spaced at 1 in (2.54 cm) intervals. (Two of the sensors for each test overlapped,

which is the reason that the simulation does not represent eight sensors per probe.) The slosh

frequency and wave amplitude were the same as for the test discussed previously. The static liquid

level was now predicted to be 2.550 in (6.480 cm) above the line of lowest sensors, compared to

2.5 in (6.35 cm) of the test, with an uncertainty of _+0.068 in (0.172 cm), and the slosh amplitude

at the wall was predicted to be -- 2.4 in (-_ 6.1 cm), compared to 2.65 in (6.7 cm) for the test.

Other tests were conducted with the sensor array not aligned with the tank excitation

direction; typically, angles of 15 °, 30*, 45 °, and 60 ° with respect to the excitation were used. The

direction of the excitation can be computed from the data from two or more such tests (or from two

or more arrays). It is assumed that the maximum wave amplitude at a given radial position varies

with the cosine of the angle between the excitation direction and line of the army. For example,

using the data from two separate tests in which the array was aligned at 15" and at 45" to the excitation

direction, the excitation direction, and thus the line of the peak wave amplitude, was predicted to

be 9.3 °, compared to the true angle of 0 °.

All the tests gave equally good predictions as the examples discussed above. Several

conclusions can be drawn from the tests. First, there is no advantage and there is possibly a

disadvantage in using an absolutely uniform array of probes. For example, if the sensor positions

had been staggered vertically from one probe to another as shown in Figure 5.2-4b, the uncertainty

in the position of the flat static position of the surface could have been reduced substantially. This

improvement can also be obtained for static liquid surfaces that are curved, such as occur in low

gravity. Second, the sensors in an army should be concentrated near the locations of the liquid

surfaces used in the tests, rather than distributed uniformly along the entire depth of the tank. Third,

the radial spacing of the probes should be no more than about 0.3Ro - 0.4Ro to obtain an adequate

resolution of wave shape, and a closer spacing would be desirable near the wall to resolve the contact

angle. Fourth, unless the direction of tank excitation can be fixed in advance and the array aligned

with that direction, at least two probe arrays are required to resolve the line of peak slosh amplitude;

these arrays cannot be at right angles.
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5.3 Load Cell Requirements

Measurement of liquid slosh forces is an essential requirement for both of the flight

experiments. Therefore, a preliminary study was conducted to develop requirements for a force

measurement system, and feasibility of a design for it.

The peak slosh force at resonance can be estimated from:

F _ m, Co_oa (5.3-1)

The slosh mass m, and natural frequency co, for a spherical tank can be obtained from the results

given in Section 4.0. The amplitudex0 of the tank oscillatory motion and the resonance magnification

factor Q can be estimated for linear sloshing to be:

x0 = 0.05 R 0

Q = 25

(5.3-2a)

(5.3-2b)

For Bo = 0, the slosh force for the LH2 spherical tank of the COLD-SAT flight experiment is thus

estimated to be about 0.0006 lb (0.00025 N)). For the Shuttle flight experiment using water as the

test liquid, the slosh force is about 0.0003 lb (0.0014 N) for the 13 in (33 cm) tank and 0.00018 lb

(0.0008 N) for the 7 in (15 cm) tank. Compared to ordinary dynamics experiments, these are

extremely small forces with extremely long (almost d.c.) time variations (see Tables 3.2-2 and

3.3-2).

A survey of commercially-available force transducers that may be suitable for flight

experiments is summarized in [10]. The highest sensitivity listed in this survey is 500 mV/lb; thus,

voltage variations of about 0.05 mV must be detected to measure the anticipated slosh forces.

Custom-designed transducers using semiconductor strain gauges have therefore been used in

previous laboratory studies of miniature slosh tanks [7, 27], and forces as small as 0.0001 lb [0.00044

N] were measured reliably. Figure 5.3-1 shows a schematic of how these kinds of sensitive strain

gauges can be used in a dynamometer to measure slosh forces, in this case in the plane of the figure;

a similar set of dynamometers at right angles is required to measure slosh forces perpendicular to

the plane of the figure. Note that the dynamometer is rigid in bending and actually senses the tensile

and compressive strains in the legs. The data acquisition system used in [7, 27] cancelled the inertia

force of the empty tank electronically, so the force that was detected was only the oscillating slosh

force; this method of measurement increased the force sensitivity of the dynamometers by several

orders of magnitude. Further optimization of the design would improve the force sensitivity even

more. It is concluded, therefore, that a force measurement system for the flight experiments can

be achieved. The specifications for such a system are listed in Table 5.3-1.
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Both in-line and cross-axis response must be measured by means of an X-Y coordinate

system. This is necessary in order to determine whether rotary slosh occurs. Static longitudinal

dead load cancellation must be included in order to concentrate on the accuracy of the dynamic

load measurement. Similarly, cancellation of empty tank dynamic load is desirable for the same

reason. The requirement for the very low frequency range has already been mentioned, and will

be aggravated by drift in the electronic circuits. Finally, static lockout will be required to avoid the

effects of dead loads during high-g phases of the flights (both static and dynamic). Although all

these requirements are extremely severe in terms of comparative requirements for high-g testing,

it was concluded that a design which uses existing state-of-the-art technology is entirely feasible.

TABLE 5.3-1 DYNAMOMETER REQUIREMENTS

104 to 10 s lbs. Range

In-Line and Cross-Axis Response

Static Longitudinal Dead Load Cancellation

Empty Tank Dynamic Load Cancellation

DC to 1 Hz Frequency Range

Static Lockout
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6.0 CONCLUSIONS

6.1. Flight Experiments

This study of liquid slosh dynamics and control has shown that there is a real need for flight

experiments to gain fundamental understanding about the phenomena that dominate liquid motions

in low gravity and to improve and validate analytical models. Many planned space missions depend

upon the ability to predict and control liquid motions, using information that can only be gained

from realistic flight experiments. To that end, two flight experiments were defined: an experiment

using liquid hydrogen in the spherical and cylindrical "receiver" tanks of NASA's proposed

COLD-SAT test bed satellite; and an experiment designed for the Shuttle middeck using water or

other nonhazardous liquids. The types of liquid motions to be investigated include small-amplitude

sloshing, nonlinear or rotary sloshing, and the decay of large-amplitude motions to long-lived,

small-amplitude sloshing. To produce these motions, the test tanks will be subjected both to transient

impulsive accelerations and to oscillatory accelerations sustained for up to eight to ten cycles. Both

experiments will investigate the range of Bond numbers near zero. For the COLD-SAT experiment,

the Bond number for each tank can be varied over about a factor of four by employing the satellite

thrusters, while for the mid-deck experiment, the Bond number is constant. The specifications and

data requirements for the flight experiments are within the capabilities of each respective carrier.

Analytical efforts and ground-based experiments were conducted in support of the flight

definitions. The conclusions from these efforts are summarized separately below.

6.2 Analytical Studies

6.2.1 Small Amplitude Linear Sloshing

The computational fluid dynamics codes FLOW-3D and NASA-VOF3D were used to

simulate low gravity sloshing in spherical tanks. Neither code was able, however, to make a realistic

simulation, primarily because of their difficulty in modeling the "free" contact line condition (i.e.,

constant contact angle) and in accurately representing surface tension forces. Therefore, a new

analysis of linear sloshing in low gravity was developed in an integral-minimization form; this

formulation permits the relatively simple surface physics assumptions used in the analysis to be

modified readily when better knowledge becomes available from flight experiments, which is

thought to be a distinct advantage. Several errors in previous analyses of the slosh force were also

corrected. "Trial" solution functions were computed by an innovative use of a finite-element

structural code, which were then used in the integral-minimization technique to compute the sloshing

frequencies, forces, and mechanical model. Since the method is based on a finite element structural

code, it can be adapted readily by other investigators.
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Examples were computed for a spherical tank to demonstrate the use of the methods. The

examples employed fill levels of 25%, 50%, and 78%, for Bond numbers of 1 and 2. Methods were

developed to "start" the finite element structural simulation such that rapid convergence of the

numerics is ensured. The results of the examples show that the non-dimensional slosh frequency

decreases as the Bond number decreases, in agreement with the limited experimental data available,

although the frequencies were consistently slightly larger than previous finite difference simulations.

The slosh masses of the mechanical model were predicted to be substantially smaller than the

corresponding high-g slosh masses.

6.2.2 Rotary Slosh Model

An existing pendulum analogy of rotary sloshing was investigated more thoroughly and

extended in a preliminary way to low gravity conditions, in order to estimate the importance of

nonlinear effects in low gravity sloshing.

A numerical scheme for integrating the equations of motion of the compound spherical

and linear pendulum was developed. The scheme can be used effectively to establish all the pertinent

model parameters for rotary slosh and is sufficiently general to be applied to any slosh test in which

the cross-axis and in-line slosh forces (i.e., effective weights of the pendulum masses) can be

measured. Some initial guessing of damping parameters is required, with help from the harmonic

balance approximate model, to start the process. The guessing process also is helped by the fact

that, at a given frequency point, an increase of both the circumferential damping and the radial

damping tends to increase the cross-axis weight produced. Since damping increases in low gravity,

this result indicates an increased tendency for cross-axis forces in low gravity, which thus impacts

the design of control systems.

The rotary slosh problem is complex in the sense that the mechanical model parameters

vary with frequency throughout the pertinent range. Hence, no one set of parameters can be claimed

to represent the compound system. Because of this complexity, the questions remains of what is

the best approach to studying the system response to transient inputs. If one set of parameters must

be selected, those associated with ot > 1.0 are the most appropriate. This is the frequency range in

which the maximum rotary motion occurs and the largest rotary forces. The harmonic balance

approximation provides good estimates of the system parameters when the response is nearly

circular. The next logical step is to make a numerical study of the transient response of the compound

pendulum model for low gravity conditions. It is also appropriate to determine whether the addition

of other mechanical components to the model might eliminate some of the coupling problems as

well as the variation of the system parameters with frequency. Finally, although only

counter-clockwise rotational motions were used in the present modeling study, clockwise solutions

also exist for each case. The direction of rotation that actually occurs depends on the initial conditions

and any lack of true rotational symmetry in the physical system.
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6.3 Ground-Based Experimentation

6.3.1 Liquid-Vapor Interface Sensors

Miniature electrical resistor sensors and, possibly, fiber optic sensors can be used to

determine the location of a discrete point on a liquid interface. An array of such sensors can therefore

be used in flight experiments to track and "visualize" the motions of the liquid surface. The frequency

response of these sensors is substantially better than the relatively slow frequencies of the liquid

surface motions expected in low gravity. Ground testing, using non-flight sensors, was employed

to determine the spatial distribution of such arrays of sensors that are required to resolve low gravity

surface configurations and slosh wave shapes. Since the sensors give only a "wet to dry" or "dry

to wet" indication, an interpolation scheme was also developed as part of the testing to convert this

digital data from the sensors to a continuous time history of the motion of each discrete surface

point. The test results proved that the free surface configuration and the slosh wave shape could

be resolved satisfactorily by arrays that were spaced radially at distances of no more than 15% to

30% of the tank radius, and spaced vertically at about 10% of the tank radius. Better resolution

could be obtained with denser arrays, especially near the tank walls. In any case, the number and

spacing of the sensor arrays can be optimized for specific liquid levels. It was concluded that (a)

the frequency response of available sensors is more than adequate for flight experiments, and (b)

the required number and distribution of the sensors does not appear to be impractical.

6.3.2 Slosh Force Transducers

The slosh forces that must be measured are in the range of 0.0006 lb (0.00025 N) for the

COLD-SAT flight experiment and 0.0002 lb (0.0009 N) for the middeck flight experiment. The

natural period of the sloshing is about 800 sec for the COLD-SAT experiment and 100 sec for the

middeck experiment. Such small forces with such relatively long periods cannot be measured with

conventional laboratory transducers. Nonetheless, a survey of commercially-available transducers

and of dynamometers used previously in laboratory testing of small Bond number sloshing did

reveal that the force measurement requirements can be satisfied. The most promising of the available

methods used semiconductor strain gages in a tension-compression arrangement, coupled with

electronic cancellation of non-slosh forces, to measure slosh forces as small as 0.0001 Ib

(0.00044 N). Further optimization of this design, which is inherently rugged and capable of

supporting large dead loads, should satisfy the requirements of the flight experiments.
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1.0 INTRODUCTION

This document describes the requirements for the Liquid Dynamics and Slosh Control

Experiment, a Class I experiment, to be performed on COLD-SAT. The purpose of

the experiment is, primarily, to gain a physical understanding of the motions

of liquids having a free surface in a low gravity environment, including the

acquisition of detailed data for several representative cases; this understanding

can then be used to develop and verify improved analytical models. A secondary

purpose is to characterize the dynamic interaction of the liquid motions with

a representative spacecraft (COLD-SAT). Included in the document are some

background information on low-g liquid dynamics, a statement of the objectives

of the experiment, a description of the physical parameters and processes to be

investigated, a description of the experiment, a preliminary test matrix, the

experimental procedures, and the data required from the experiment.

Because free-surface motions in a tank depend strongly on container geometry,

liquid fill level, liquid physical properties, ambient gravity level, and container

motion, it is not practical to determine the dynamics of the motions by low-gravity

experimentation for everymission anticipated by NASA and DOD. Instead, analytical

and numerical models must be used for most of the missions. But these models

must be validated by comparison to a reference set of actual low-gravity data

for a few representative cases. The scope of the COLD-SAT experiment has been

formulated with this goal in mind.

2.0 BACKGROUND

Liquid dynamics in the tanks of space vehicles has long been recognized as being

important to stability and structural loading. NASA's plans for an ambitious

Space Exploration Initiative to the Moon and Mars involve vehicles that will

transport and store enormous quantities of cryogenic propellants in space.

Additionally, some kinds of space-based optical systems (e.g., the Strategic

Defense Initiative) also involve large mass fractions of liquids. Tank sizes

for these and other space vehicles range from a meter or so in diameter to several

tens of meters. The control, pointing, and docking of spacecraft containing

such large masses of liquid, as well the transfer of liquid between spacecraft,

is critically dependent upon understanding and controlling the motions of the

liquids.

The dynamics of liquids in tanks in normal gravity is well understood, and

analytical, numerical, and scale-model test methods have been established to

treat these "high-g" problems [1, 2]. However, low-gravity free-surface liquid

motions are not nearly so well understood. The motions are dominated by surface

physics effects that cannot be investigated realistically by ground testing in

normal gravity. Some information is available from drop tower and zero-g tests

[e.g., 3] but all such studies to date have employed small tanks and non-cryogenic

liquids. It appears from this limited amount of data that, for reasons that are
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not well understood, slosh damping is larger in 1ow-gravlty [3, 4] and nonlinear

effects such as rotary sloshlng are more prominent [5, 6]. As addltlonal evidence

of the importance of surface physics, ground-based slosh tests that simulate

low-gravity indicate that the response of the liquid depends strongly on the

motion of the liquld-tank contact 11ne [e.g., 7]; for example, the natural

frequency and damping varies by more than a factor of two between a "free" contact

11ne and a "stuck" contact 11ne condition. Consequently, thls COLD-SAT experiment

is needed to study surface motion of cryogens in tanks of moderate size, in an

actual 1ow-gravlty environment for a sufflciently long test duration.

3.0 TECHNOLOGICAL OBJECTIVES

The specific objectives of this technology experiment are: (1) determine and

understand the liquid motion resulting from typical maneuvers of spacecraft; and

(2) characterize the interaction of the motion with spacecraft for a typical

spacecraft (COLD-SAT). These objectives will (a) provide physical understanding

about the motions of cryogens in low-gravity; (b) supply data from which to

establish the adequacy of existing analytical and numerical models of such

motions, and indicate where improvement is needed; and (c) yield typical data

on the damping of low-gravity motions from which analytical and empirical

correlations can be developed.

The physical processes to be investigated include:

Static]_1_qJLt_J}_Lq_.!:_L1_Qn- The configuration of the liquid in the test

tanks will be monitored under ambient on-orbit conditions.

resoonse to various discrete AC,.f_]_e__L!zi_- The liquid will be

oriented to give a specific initial orientation. Impulsive and periodic

accelerations of selected amplitude, frequency, and duration will be

applied and the free surface response monitored.

ECte,.CJj__ofs]oshbaffles- The cyllndrlcal receiver tank will contain

a single ring baffle to demonstrate the damping of liquid motions in low

gravity.

4.0 JUSTIFICATION

The motion of contained 11qulds has a profound influence on the dynamics and

control of space vehicles, the transfer of liquids between vehicles, and the

docking of one vehicle to another. Future space missions will carry much larger

quantities of liquids, primarily cryogens, than is common now, and the mission

performance requirements will be much more demanding. As an example of the

problems that must be solved, space-based telescopes and strategic defense

satellites must be pointed to an angular accuracy of the order of 0.0005" and

that accuracy must be maintained even during tracking maneuvers; since the

A-2



tracking maneuver will set into motion the contained liquids, one can imagine

that the ability to understand, predict, and control the dynamics of the moving
liquid will be critical.

Although some spacecraft maneuvers will certainly create large motions of the

contained liquid, this experiment will concentrate on liquid motions that are

localized about the initial position of the liquid; such motions are usually

called "sloshing." There are several reasons for limiting the experiment in

this way. First, large motions are dominated by liquid inertia and so can be

modeled more easily than motions dominatedbylittle-understood surface physics.

Second, large motions eventually decay to smaller amplitude sloshing motions.

Third, slosh motions can be excited by a variety of typical control maneuvers

of spacecraft and are thus important in their own right.

5.0 ANALYTICAL MODELS

Low gravity fluid dynamics in "bare" tanks are currently modeled either by general

purpose computational fluid dynamics (CFD) codes, such as NASA-VOF3D or FLOW-3D

[8, 9], or by special-purpose llnearized analyses [10]. At present, however,

only the CFD codes can model slosh baffles and other internal hardware. Both

methods employ assumptions about the surface physics that either need to be

validated or improved by in-space experimentation with cryogens.

The parameters needed for the models include tank shape, liquid fill level, and:

Bond number Bo =g.: /13

Static contact angle e,

where g,yy is the effective "gravity" or linear acceleration of the spacecraft,

a is a representative dimension of the tank, and _ = a/p is the specific surface

tension of the liquid. The tank shape and the direction of g,IIwith respect to

the tank axis must also be specified, and, for investigations of nonlinear

effects, the tank motion as well.

Bond numbers Bo < 10 or so represent "low" gravity conditions, while Bo << I

represent "micro" gravity conditions; Bo < 1 is representative of a large tank

(> 1-m in diameter) in orbit. Whenever the contact angle of the liquid with the

tank is small (as it is for cryogens and tank materials of interest), the free

surface of the liquid is highly curved in low gravity; the extreme case of Bo

= 0 and a zero-degree contact angle results in a free surface that is spherical.

The stability of the free surface is also a function of Bo (based on the disturbance

acceleration) and contact angle.
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The models also require a relationship that specifies how the contact angle

changes as a function of the contact line velocity when the liquid surface is

in motion. Current]y, the only relation that can be employed in the models is

that the contact angle remains constant at its equilibrium value, regardless of

contact line velocity. Although this assumption appears to agree with most (but

not all) of the available small-tank, drop-tower test results, fundamental studies

of the spreading of liquids on surfaces indicate that it may be an over-idealization
[11]. This COLD-SAT experiment is designed to establish better contact angle

- contact line velocity relations for cryogenic liquid and tank materials of

importance. If the results of the experiment show that an assumption of constant

contact angle is not valid, the models must be modified. Other surface physics

phenomena may be important and therefore will need to be included in the models

(e.g., surface tension hysteresis) but the nearly complete lack of low-gravity

slosh data has so far prevented the establishment of all potentially important

parameters.

There are currently no models of the damping provided by slosh baffles in

low-gravity. The models that will be evaluated are modifications of high-g

results [I]. The models of low gravity viscous, or "bare" tank, damping have

not been well validated; for example, some correlations developed from drop-tower

and simulation tests show that the viscous damping ratio T is a function of Bond

number as well as viscosity:

7= A (v/f,a 2)m [1 + C(Bo)-']

where v is the kinematic viscosity and f. is the slosh natural frequency. These

correlations were developed from tests with Bo > I and may overestimate the

damping significantly when Bo < 1 (because of the negative exponent on the Bo

term). Improved correlations will be developed from the results of this COLD-SAT

experiment.

6.0 EXPERIMENT REQUIREMENTS

6.1 Description of Experiment

To investigate the influence of tank shape, slosh experiments will be conducted

in both receiver tanks. The cylindrical receiver tank will be fitted with a

single ring-baffle near its midpoint, but the spherical receiver tank will not

contain any specific anti-slosh devices. The tank support structures will

incorporate load cells to monitor the forces and torques exerted on the tanks

by the sloshing liquid. Liquid-vapor sensors in the tanks will be used to monitor

the static liquid configuration and the motion of the free surface. The COLD-SAT

propulsion system will be used to provide specific linear accelerations (g,z)

and discrete disturbance accelerations.
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These COLD-SAT experiments can be performed as opportunities (which are plentiful)

when the liquid fill volumes of interest are available during other tests. Some

of the specified disturbance accelerations may also occur during other testing.

6.2 Key Parameters

The key parameters expected to influence the low-g slosh experiments are (1)

liquid surface tension, density, and viscosity (which are functions primarily

of liquid temperature for a given liquid), (2) tank shape and internal hardware,

(3) fill level, and (4) acceleration environment. It is not proposed to vary

the liquid temperature systematically, so the effect of liquid properties will

not be investigated except as the temperature may change for other reasons from

test to test. The influence of tank shape will be investigated by tests with

both receiver tanks, one of which is basically a cylinder and the other a sphere.

The only internal hardware that will be specifically investigated will be a slosh

baffle (an annular ring) in the cylindrical tank to investigate the performance

of a typical baffle in low gravity when the static liquid surface is near the

baffle; other static liquid levels will be chosen to simulate "bare wall"

conditions in the same tank. The influence of liquid level will be investigated

by conducting tests, to the extent possible, over a variety of fill levels. The

influence of effective gravity will be investigated by conducting tests at several

thrusting levels, as described later in Section 6.5; the acceleration will be

directed along the symmetry axis of the tanks to facilitate comparison with

analytical/numerical models. Perturbation accelerations to excite sloshing will

include impulsive and periodic motions of the spacecraft. The duration of the

periodic acceleration will be varied, depending upon the objective of the test,

as described later in Section 6.5.

6.3 Measurements

The static and dynamic configuration of the free surface is important in

understanding and correlating the experimental results; for example, the slosh

wave shape near the wall will indicate whether the contact angle remains constant

during sloshing or, alternatively, that the contact line is "free." Liquid-vapor

sensors mounted in the receiver tanks will therefore be used to monitor both the

static and dynamic configurations and the frequency of the surface motions. To

accomplish this, the sensors must be arrayed vertically and radially, as

illustrated in Figure 1; ideally, the sensors should be contained in two orthogonal

arrays. Ground-based experiments indicate that the free surface shape can be

resolved accurately when the radial spacing of the sensors is as large as 20_

of the diameter (i.e., spaced at I0_, 30_, 50_, 70_, and gO_ of the diameter)

and the vertical spacing is as large as I0_ of the diameter. More widely spaced

intervals can be used without sacrificing accuracy in the frequency estimation
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Figure 1. Liquid-Vapor Sensor Array Recomended for Slosh Wave Shape
Measurement
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(which is determined by the data sampling rate) but the surface shape estimation

will be degraded. Note that the vertical spacing of the sensors can be concentrated

at the static liquid levels employed in the tests, and, if necessary, the radial

array locations can be reduced to 10_, 30_, and 50_of the tank diameter. Because

of the low frequencies of the anticipated slosh motions, the required frequency

response of the liquid-vapor sensors is essentially d.c. Of more importance is

the time required for a sensor signal to change from "dry" to "wet" and from

"wet" to "dry" as the liquid surface passes the sensor location; ground-based

experiments indicate, however, that the signal changes abruptly over a time

period that is very small compared to the time between successive passages of

the liquid surface; thus, the sensors should function more than adequately.

Knowledge of the overall slosh wave shape and frequency, as acquired by the

liquid-vapor sensor array, is sufficient to examine the predictive accuracy of

analytical models. More fundamental information may be needed to identify weak
assumptions in the models. For example, the relation between the dynamic contact

angle at the wall and the contact line velocity can potentially have a significant

influence on the slosh frequency and force, even though existing models assume

that the dynamic contact angle remains equal to the static contact angle. The

liquid-vapor sensor array illustrated in Figure A.1 will not be adequate to

acquire detailed data about the wave shape near the wall. To resolve the wave
shape near the wall in detail, and thus to infer the behavior of the contact

angle as a function of time, will require a denser radial and vertical array of

sensors near the wall for at least one selected liquid level. These sensors

should be spaced symmetrically at about O.OZP_ above and below the free surface

over a total vertical distance of about 0.1P_, and at ]east two such arrays should

be spaced radially at intervals of O.02P_ from the wall. Because of the "bent

over" geometry of the tank-liquid intersection for spherical tanks, the dense

arrays are most readily made applicable to cylindrical (straight wall} tanks,

although a dense array of sensors positioned along a radial line could be used

for spherical tanks. In addition, the array installation must not significantly

interfere with the slosh wave motion. It is understood that the use of such

dense arrays will require substantial data acquisition rates and may interfere

with other experiments.

The support structure of the receiver tanks must be designed to accommodate load

cells with which tomasure slosh forces. The slosh force measurements can also

be used as a means of independently determining slosh natural frequencies and

damping, in the event of difficulties in interpreting the liquid-vapor sensor

data for a particular test. The magnitude of the slosh forces that must be

measured is a function of Bo and the amplitude of the imposed disturbance

acceleration. For the COLD-SAT receiver tanks and the proposed excitation

amplitudes, the expected force amplitudes range from about 0.0001 lbs to about

0.001 lbs. The required frequency response of the load cells also depends on

Bo but is essentially d.c. Such small forces can be measured reliably only by
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eliminating (or otherwise compensating) the large non-sloshlng dead-load slgnal

from the dynamic slosh force signal. This compensation can be accomplished

electronlcally before the slgnal is transmitted to the data acquisition system,

by methods used prevlously in ground tests [e.g., 4].

The liquid temperature near the free surface and tank pressure must be measured

at the initiation and conclusion of each test, to determine the liquid properties.

The accuracy of the required pressure measurement is ±5 psia, and the accuracy

of the required temperature measurement is ±I°R. The temperature determination

must be made at enough locations to estimate a representative average temperature.

TABLE 1

MEASUREMENT REQUIREMENTS FOR LIQUID DYNAMICS EXPERIMENT

Parameter

Liquid temperature

Tank pressure

Liquid interface

position

Slosh force

Slosh frequency

Steady linear
acceleration

Range Accuracy

20 - 50"R ± I"R

5 - 50 psia ± S psta

Cylindrical tank: ± _ axial
0 - 4 ft axial; ± i_ radial
0 - 1.3 ft. radial

Spherical tank:
0 - 1.3 ft

0 - 0.00011b ± 2_

0.001 - O.O1 hz ± 1_.

8pg - lOOpg ± 1_

Perturbation Impulse: A¢m S_g ± I_

acceleration Periodic: Apm8pg

_p- 75 - 125 sec

Instrmeent

COLD-SAT temp.
sensors

COLD-SAT pressure
sensors

Liquid/vapor sensors
with 2 - 5 second

response

Load cells on tank

support structures

Load cells and
liquid/vapor sensors

COLD-SAT acceler-
ometers or compute
from thruster firing
histories

COLD-SAT gyros and

accelerometers, or

compute from thruster

firing histories

The effective gravity acceleration and the magnitude and history of the disturbance

accelerations will be measured by the satellite accelerometers and gyros. The

effective gravity amplitude should be measured to ±1_. Ideally, the perturbation

accelerations should also be measured to within ±I_ in amplitude and continuously

in time. If these requirements cannot be met, the steady and perturbation

accelerations can be computed from the history of the specified thruster firings.

Table 1 summarizes the measurement requirements.
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6.4 Hardware Requirements

The special hardware items required for the experiment are: (I) annular ring

baffle mounted in the cylindrical receiver tank; (2) load cells mounted on the

support structures of both receiver tanks, and (3) liquid-vapor sensor arrays
in both receiver tanks.

The recommended width of the ring baffle is I0_ of the tank radius. The baffle

should be located at an axial position such that (a) the liquid free surface for

40_ filling is slightly above the baffle and (b) no part of the free surface is

pierced by the baffle. This location will maximize the damping at the 40_filling

level while permitting higher filling levels to be investigated without significant

damping from the baffle.

The load cells must be mounted on the tank support structures at locations where

the lateral forces can be sensed.

The liquid-vapor sensors must be arrayed in sufficient numbers to determine the

liquid interface position with the accuracy indicated in Table I.

6.5 Procedures

The liquid dynamics experiments will be performed primarily when opportunities

arise. Whenever the satellite is maneuvered for other experiments or for

operational reasons, the data necessary to define the quantity of liquid in each

receiver tank, the disturbance, and the liquid-vapor sensor responses can be

acquired. Nonetheless, several tests using periodic excitation probably will

not occur as opportunities and must be conducted specifically.

The tests identified in Table 2 will be performed when the desired liquid levels

(± 5_) are reached over the course of testing. During the tests, the satellite

attitude control thrusters will be operated with specific commands to obtain the

desired perturbation accelerations. The initial orientation of the liquid will

be established by applying a settling acceleration with the thrusters, and this

level of steady acceleration must be maintained for the duration of each test.

The motion of the liquid surface will be monitored by the liquid-vapor sensors

and the slosh forces by the load cells throughout each test.

The steady accelerations listed in Table 2 were selected to conform to the nominal

levels that can be obtained byfiring a single engine or a combination of engines;

the exact acceleration level is not important so long as it is recorded for later

data analysis. The perturbation accelerations are nominal also, and correspond

to the firing of the appropriate attitude control thrusters or, depending on the

COLD-SAT design, a gimbaled engine; again, the exact levels of the accelerations

are not important with the exception that they should be a small fraction of the

steady acceleration. Impulsive perturbations are obtained by firing the engines
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for a short time, and periodic perturbations by on-off firings for scheduled

periods. The frequency of the periodic accelerations should be maintained as

indicated in the table, since the intent is to excite near-resonance sloshing.

The tests using impulsive excitation are designed primarily to determine the

slosh natural frequency and damping. The tests using periodic excitation are

designed either to determine slosh forces or to evaluate nonlinear effects,

particularly the tendency for rotary slosh.

6.6 Data Analysls

Liquid temperature and pressure measurements will be used to determine the liquid

surface tension, viscosity, and density from tabulated data. Liquid volume and

liquid-sensor measurements before the perturbation acceleration is applied will

be used to estimate the initial configuration of the liquid surface and the

static contact angle. Accelerometer and gyro data acquired during the test (or

computations based on the thruster firing histories) will be used to determine

the imposed motion of the test tanks.

For impulsive perturbations, liquid-vapor sensor measurements during the sloshing

will be analyzed to compute (I) slosh wave shape and amplitude as a function of

time, (2) slosh natural frequency, and (3) slosh damping (from the decay of the

slosh wave amplitude). If a dense array of sensors is used near the wall as

discussed in Section 6.3, contact angle and contact line velocity will also be

computed as a function of time; if not, these quantities will still be estimated

but the resolution is not expected to be sufficient for fundamental studies.

The load cell force histories will be analyzed to confirm the slosh natural

frequency and damping data and to compute the slosh force. For periodic

perturbations, the data analysis will be similar to the impulsive acceleration

tests, with the exception that neither the liquld-vapor sensor nor the load cell

measurements will provide damping data. The load cell data, in conjunction with

damping data from the impulsive tests for the same Bond number and liquid level,

will be analyzed to determine the effective mass of liquid participating in the

sloshing.

Eventually, all the analyzed test data will be used to compare with predictions

from the analytical/numerical models for the same Bond number, fill level, contact

angle, and excitation.
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Table 3 NOMENCLATURE

tank radius, cm

amplitude of impulsive acceleration, g's

amplitude of periodic acceleration, g's

Bond number, g_o_p

slosh natural frequency, hz

effective gravity or steady linear acceleration, cm/sec 2

specific surface tension, o/p, cm3/sec 2

kinematic viscosity, cmZlsec

static contact angle, degrees

density, g/cm 3

surface tension, dynes/cm

length of impulsive acceleration, sec

period of periodic excitation, sec

slosh period, 1/f., sec
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B.1 Solution for Equilibrium Surface Shape

The free surface of a fluid in a tank is defined by the following differential equation in the

normalized surface coordinates introduced in Section 4.0.

d2Z dR d2R dZ 1 dZ
Bo(Z-Zo) + _o = 0 (B.I-1)

ds 2 ds ds 2 ds R ds

Five boundary conditions are required to solve this equation. At the centerline of the tank

there are four conditions which are specified,

dZ dR
R=O, Z=-Zo, m=0,--=1, at s=O (B.1-2)ds ds

The fifth condition is defined by the contact angle between the fluid and the tank wall,

dZ

ds cos 0 c
at s = sw.,, for cylindrical tank

ds co 0c--= +s,n [_,

at s = s,,_, for spherical tank

used.

approach. Consider the relation between the surface coordinates,

-_-s) + _ =1

(B.1-3)

Because Equation (B.I-1) is highly nonlinear, a computational approach to its solution is

This equation can be reduced to a set of coupled ftrst order equations with the following

(B.1-4)

Solving this relation for dR/ds and differentiating,

1

ds - 1 _ ds J J
(B.1-5)

ds 2 ds 2 ds [. ds )
(B.1-6)

Substitute this into Eq. (B.I-1) and rearrange to yield,

1 dZ 1d2Z dR  +ao(Z_Zo)_R-- -- -_Sds 2 ds
(B.1-7)

B-1



Now solveEq. (B.1-4)for dZ/ds and differentiate,

[ 'd'-7 = 1 t, ds J_l
(B.1-8)

d2Z d2RdR(dZl-Ids 2 = ds 2 ds -_s
(B.1-9)

Again, substitute this relation into Eq. (B. 1-1),

d2R

"ST_"_dZ l(dZl2= -ff o+ao(Z-Zo)] +ds 2
(B.I-IO)

Four fh-st order differential equations can now be formed,

dZi

ds 7-'2 (B.I-11)

[_ 1 dZ_] (B.1-12)dZ2 dR_ +B°(Zl-Z°) R_ dsds ds

dR1

=R 2 (B.l-13)

dR 2 dZl I [dZi )2d'--s- = -_'_ + B°(Z1- Z°)]"_'s + R'_ [ _s (B. 1-14)

These four equations can be solved with the use of a standard fourth-order Runge-Kutta

integration algorithm. The four initial conditions at s=O are specified to begin the solution. The

solution is obtained with various values of X0 until the contact angle condition is satisfied. This

method is similar to the "shooting" technique used to solve the Blasius equation for a laminar

flat-plate boundary layer profile.

It should be noted that Eqs. (B.l-12) and (B.l-14) contain a singularity at R=O which must

be resolved before the solution can proceed. First, take the limit ofEq. (B.l-12),

lim/dZz) = _ + limI ldZ1), .-,oi,,ds ,--,ot,Ra _s (B.1-15)

Using L'Hospitai's rule,
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lim(  =
, _Ok. a, )

(B.1-16)

or,

lim(dZ2/ = 1-
•--,ok as ) "2_ (B.l-17)

Similarly, Eq. (B.1-6) can be used,

lim(dR2_=limld2Z_dZ_(dR_)-_l = {1- }
• --,o[,ds ) ,--,o t ds dsk,"_'s ) J 2 x°×0×l (B.l-18)

lim(dR21 = 0 (B.l-19)
• -,o k ds )

A computer program was developed for solving the system of equations, (B. 1-11) - (B. 1- 14).

A listing of this routine follows. This routine requires the user to manually iterate on the value of

Xo until the desired solution is achieved. This particular version of the code will execute on an

IBM-PC when compiled with Microsoft FORTRAN 5.0. Very minor modifications are required

to execute the code on other platforms.

An automatically iterating version of this program which uses a Newton-Raphson approach

to converge on a value of X0 was also prepared. This approach is highly sensitive to the specific

conditions and requires certain program modifications to "tune" the convergence rate for each

application. So, it is not presented here.

A sample input file for this program follows the program listing. This file is read with

FORTRAN list-directed READ statements; so, the format is rather flexible. A descriptor of each

value in the file can be included because of this choice of file reading technique. The values listed

here should be contained in a file named GENSURF.INP. These values are appropriate for a

spherical tank that is 75% filled for the case ofBo=I. A value of_ = 2.98068 (supplied by the

user from the keyboard) will provides a contact angle of 5.0467", which is within 1% of the desired

values of 5".

B-3



B-4



B.2 Solution for Slosh Potential and Mechanical Model Parameters

The non-dimensional slosh velocity potential is defined as:

i

= Y.biUi (B.2-1)

where the Ui are the trial solutions from the structural finite element simulation. The bi are the

modal participation factors, or the eigenvectors, determined from the eigenvalue matrix equation:

[A] {U} = fl2[B] {U} (B.2-2)

Equation (B.2-2) is derived from numerically integrating the minimum integral, Eq. (4.4-29), with

the assumption that _)U--_/3N = f_2(1 +Bo)M'Ui on the free surface. The matrix A is:

S¢

Aii= MU, BoR -_ --_ "_ +-_-R +R"_2 M dS (B.2-3)

and the matrix B is:

S c

f
o

(B.2-4)

A QUICKBASIC computer code "LOW-G.BAS" was written to integrate Eqs. (B.2-3) and (B.2-4)

numerically. The code computes the required S-derivatives of Uj of [A] numerically by fitting a

quadratic through the value of the central point and the two adjoining points; the points at the S =

0 and S = S, are handled by special formulas.

The code also solves the matrix equation (B.2-2) to determine the eigenvalue f_2 for the

fundamental slosh mode and the corresponding b_ eigenvectors. The slosh wave amplitude Ho at

the wall is then computed:

(1 +Bo)M(S =S..) z, it.'ii
_2

The slosh mass is computed by numerically integrating Eq. (4.4-28):

(B.2-5)

(B.2-6)
[(2K,R,-cosy,)coty,]H, , --0<_

rcpR: -_,,,R,,dZ 6_

where the subscript w indicates that the parameter is evaluated at the tank wall. The normal derivative

of • in the denominator of Eq. (B.2-6) is computed from analogy to Eq. (B.2-1) as:

/)¢ i

ON - M(1 +Bo) T. bi_i-U i (B.2 - 7)
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The other parameters of the mechanical model are computed from Eqs. (4.4-26a) and (4.4-25b).

The QUICKBASIC program also computes these parameters.

The code requires the following general input information:

Bond number

Filling percent

Contact angle

Exponent m and parameter e of Eq. (4.4-36)

Number of nodes on the free surface along the line 0 = 0

Number of trial modes (1, 2, or 3)

The code also requires the following data for each of the finite element nodal points on the free

surface along the line 0 = 0

Nondimensional nodal coordinates R, S

Nondimensional derivatives dR/dS, d2R/dS 2, dZ/dS, and dZZ/clS 2

Trial potentials Ui for each mode

and the data at each finite element nodal point on the tank wall along the line 0 = 0:

Nondimensional nodal coordinates R, Z

Trial potentials Ui for each mode.

The coodinate data and the various derivatives are available from either the finite element simulation

model or from the code described in Section B. 1.

A sample set of input data is shown in the following pages for a 50% full tank and Bond

number of one. As shown, the data is entered from the terminal. Any of the data for each screen

can be corrected when the screen is displayed. The data is saved in two disk files COORD.DAT

and MODE.DAT and the case can be run again, and the input data corrected if necessary, by

indicating on the f'trst screen that the data is to be read in from the disk files. The computed output

is displayed on the screen and, if desired, printed.

A listing of the code is also attached. The code is extensively commented so that the logic

flow can be readily followed.
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MINIMIZE INTEGRAL TO FIND THE LOW-G SLOSH POTENTIAL

BY USING THE STRUCTURAL CODE TRIAL FUNCTIONS

Hit RETURN after each entry

Bond No. = _ Filling % =

Mass function: Exponent =

How many trial modes do you want to consider?

How many nodal values are there at the surface and wall?

Eigenvalue of trial modes = 0.456469 I 1.53750 I 2.88534

DO YOU WANT TO INPUT NODAL DATA FROM THE (I) TERMINAL OR

Contact angle at wall (deg) =

Constant =

(2) FILES ? D

Input Screen No. 1

J

DATA FOR FREE SURFACE NODES

Enter: Node #, and R, S coordinates of node, starting at R=0.

Use the ENTER or DOWN ARROW key to enter each value from the file.

Use the UP ARROW key to move back upthroughthe date.

Node # R
1 79 0

2 248 .07792

3 416 .15524

4 582 .23147

5 745 .30611

6 904 .37865

7 1058 .44849

8 1206 .51507

9 1347 .57773

I0 1480 .63576

ii 1604 .68844

12 1718 .73494

S

0

.07801

.15594

23384

31174

38971

46773

54585

62408

70239

78076

85907

soa8 # R
13 1821 .7745

14 1900 .81146

15 1967 .83453

16 2069 .84649

17 2069 .84975

18 2106 .84636

19 2135 .83806

20 2157 .82629

21 2173 .81224

22 2184 .79681

23 2191 .78074

24 2195 .76457

25 2197 .74871

S

.93725

1.02973

1.11248

1.18672

1.25334

1.3132

1 36694

1 4152

1 45847

1 49728

I 53207

I 56317

1 591

Input Screen No. 2

J
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f

DATA FOR FREE $URIrACE NODES

Enter: dR/dS and dZ/dS derivatives for each node.

Use the ENTER or DOWN ARROW key to enter each v&lue from the file.

Use the UP ARROW key to move back up through the data.

Soda I R' (s)
i 79 1

2 248 .99662

3 416 .9865

4 582 .96951

5 745 .94548

6 904 .91412

7 1058 .87508

8 1206 .828

9 1347 .77246

i0 1480 .70807

11 1604 .63449

12 1718 .55154

z' (s) _ I R' (s)
0 13 1821 .45919

08198 14 1900 .33774

16369 15 1967 .21826

24499 16 2069 .10303

32566 17 2069 -.00601

40545 18 2106 -.10773

48395 19 2135 -.20132

5607 20 2157 -.2865

63503 21 2173 -.36323

70612 22 2194 -.43184

77293 23 2191 -.4928

83414 24 2195 -.54656

25 2197 -.59386

Z' (S)
88832

94123

97588

99465

99996

99415

97949

95804

93166

.9019

.87012

.83738

.80457

f

Input Screen No.3

1

2

3

4

5

6

7

8

9

10

11

12

DATA FOR FREE SURFACE NODES

Enter: d2R/dS2 AND d2Z/dS2 derivatives of each mode.

Use the ENTER or DOWN ARROW key to entez each value from the file.

Use the UP ARROW key tom oR _ck %_gh _ dab.

soda # R,, (s) z " (s) xoda |
79 0 1.0513 13 1821
248 -.08638 1.0501 14 1900

416 -.17366 1.0465 15 1967

582 -.26284 1.0401 16 2069

745 -.35485 1.0302 17 2069

904 -.45054 1.0158 18 2106

1058 -.55057 .99553 19 2135

1206 -.65544 .96788 20 2157

1347 -.7653 .9309 21 2173

1480 -.87996 .88238 22 2184

1604 -.9987 .81982 23 2191

1718 -i.1201 .7406 24 2195

25 2197

R' ' (s)
-I 2421

-i 3836

-i 5028

-I 5989

-i 6722

-I 724

-17563

-17716

-17725

-17616

-17415

-17143

-i 6822

Z" (s)
.64203

.49645

.33608

.16558

-.01008

-.18686

-.36103

-.52984

-.69108

-.84354

-.98635

-1.119

-1.2416

Input Screen No. 4

J
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1
2

3
4

5

6
7
8

9
10

11

12

DATA FOR FREE SURFACE NODES

Enter: Potential values for mode number 1

Use the ENTER or DOWN ARROW key to enter each value from the file.

Use the UP ARROW key to move back up through the data.

79

248

416

582

745

904

1058

1206

1347

1480

1604

1718

Potential

0

08704

17291

25714

34031

42302

50533

58777

6702

75276

83602

92011

Node # Potential

13 1821 1.0046

14 1900 1.1151

15 1967 1.2131

16 2069 1.3021

17 2069 1.3826

18 2106 1.4543

19 2135 1.5171

20 2157 1.571

21 2173 1.6165

22 2184 1.6537

23 2191 1.6834

24 2195 1.7069

25 2197 1.7266

J

Input Screen No. 5

f
DATA FOR FREE SURFACE NODES

Enter: Potential values for mode number 2

Use the ENTER or DOWN ARROW key to enter each value from the file.

Use the UP ARROW key to move back up through the data.

1

2

3

4

5

6

7

8

9

10

11

12

No_ I
79

248

416

582

745

904

1058

1206

1347

1480

1604

1718

Potential Node # Potential

0 13 1821 -.08276

.17499 14 1900 -.47634

.33763 15 1967 -.89097

47736 16 2069 -1.3111

58819 17 2069 -1.7256

6655 18 2106 -2.1232

70452 19 2135 -2.4927

70172 20 2157 -2.8277

65315 21 2173 -3.1221

55491 22 2184 -3.3721

40354 23 2191 -3.5779

19417 24 2195 -3.746

25 2197 -3.89

J

Input Screen No. 6
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1

2

3

4

5

6

7

8

g

10

11

12

DATA FOR]FREE SURFACE NODES

Enter: Potential values for mode number 3

Use the ENTER or DOWN ARROW key to enter each value from the file.

Use the UP ARROW key to move back up through the data.

Node # Potential Node # Potential

79 0 13 1821 1.2743

248 -.42058 14 1900 1.1995

416 -.76613 15 1967 .8525

582 -.97616 16 2069 .33672

745 -1.0243 17 2069 -.28961

g04 -.90966 18 2106 -.97582

1058 -.65127 19 2135 -1.6773

1206 -.28438 20 2157 -2.3587

1347 .14303 21 2173 -2.9891

1480 .57584 22 2184 -3.5445

1604 .95534 23 2191 -4.0134

1718 1o2164 24 2195 -4.4017

25 2197 -4.7374

Input Screen No. 7

f

1

2

3

4

5

6

7

8

g

10

11

12

DATA FOR T/%NK _ NODES

Enter: Node #, and R, Z coordinates of node, starting at R=0

Use the ENTER or DOWN ARROW key to enter each value from the file.

Use the UP ARROW key to _ve haok up through t_ _ta.

1

170

338

504

667

826

980

1128

1269

1402

1526

1640

R

0

124

2461

3644

4772

5826

679

7649

8389

9

947

9794

Z

-1

- 993

- 9705

- 933

- 8811

- 8154

- 7372

- 6475

-5479

-.4398

-.3249

-.205

Noa.#
13 1743

14 1834

15 1912

16 1978

17 2033

18 2078

Ig 2114

20 2142

21 2163

22 2178

23 2188

24 2194

25 2197

R

9966

9995

9909

9744

9526

9276

9009

8735

8464

8201

7949

771

7487

Z

-.0821

.0322

.1343

.2247

.3041

.3735

4341

4868

5325

5722

6068

6367

6629

Input Screen No. 8
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1
2

3
4
5

6
7

8

9
10

11

12

DATA FOR T_ W_%/J, NODES

Enter: Potential values for mode number 1

Use the ENTER or DOWN ARROW key to enter each value from the file.

Use the UP ARROW key to move back up through the data.

Node # Potential Node # Potential

I 0 13 1743 .8799

170 .05298 14 1834 .9823

338 .1089 15 1912 1.085

504 .169 16 1978 1.186

667 .233 17 2033 1.282

826 .3006 18 2078 1.371

980 .3716 19 2114 1.451

1128 .4462 20 2142 1.522

1269 .5243 21 2163 1.582

1402 .6063 22 2178 1.632

1526 .6926 23 2188 1.672

1640 .784 24 2194 1.702

25 2197 1.727

/

Input Screen No. 9

1

2

3

4

5

6

7

8

9

10

11

12

DATA FOR TANK RTLLL NODES

Enter: Potential values for mode number 2

Use the ENTER or DOWN ARROW key to enter each value from the file.

Use the UP ARROW key to move back up through the data.

Node # Potential Node # Potential

1 0 13 1743 .06863

170 .06443 14 1834 -.1741

338 .1303 15 1912 -.4842

504 .1966 16 1978 -.8512

667 .2603 17 2033 -1.259

826 .3177 18 2078 -1.688

980 .3646 19 2114 -2.117

1128 .3964 20 2142 -2.527

1269 .4074 21 2163 -2.902

1402 .3904 22 2178 -3.227

1526 .3361 23 2188 -3.497

1640 .2328 24 2194 -3.712

25 2197 -3.89

Input Screen No. i0

J
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DATA FOR TANK RALL NODES

Enter: Potential values for mode number 3

Use the ENTER or DOWN ARROW key to enter each value from the Zile.

Use the UP ARROW key to move back up through the data.

_ode #

1 1

2 170

3 338

4 504

5 667

6 826

7 980

8 1128

9 1269

10 1402

11 1526

12 1640

Potential

0

- 06434

- 1249

- 1757

- 2083

- 2142

- 1858

- 1169

- 00369

1533

3457

5533

Node #
13 1743

14 1834

15 1912

16 1978

17 2033

18 2078

19 2114

20 2142

21 2163

22 2178

23 2188

24 2194

25 2197

Potential

738

8465

8167

6092

2139

- 3489

-i .033

-i .78

-2.53

-3.226

-3.829

-4.323

-4.737

Input Screen No. ii

f

Bond Number

B(1) =l 1.00000

INPUT DATA

Fill Level % Cont. Ang Surface Mass Distribution Function

[--_ _-_ 1.100 - (S/Smaz)'2.50

PARTICIPATION FACTORS OF TRIAL MODES

B(2) = 0.01013 B(3) = 0.00026

NON-DIMENSIONAL PARAMETERS OF THE PENDULUM MODEL

(Liq Vol)/(=* Ro^3)

0.6633 I

CGLoc./Ro

0.6856 J

Slosh M/Liquid M Fend. L/Re He/Re

0.2196 I [1.4881[ -0.279

spring/(o * Re"2) Freq*2/((l+Bo)a/(d * Re"3))

0.6811 0.6720

Do you want the above data printed out (Y or N) ?

Output Screen

J
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*******************************

*******************************

C

c PURPOSE:

C

C

C

c USAGE:

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c NOTE:

c

c

c

c

c
c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

PROGRAM
GENSURF

Generate the shape of an equilibrium free surface of a

liquid at low gravity in sperical and cylindrical
containers.

This program is based heavily on the DYSIM program for

system simulation. This routine employs a fourth-order

Runge-Kutta algorithm to integrate a system of first-order

differential equations.

A file which holds the solution parameters and ODE initial

conditions is read. The program requests a value from the

user for RLMB (lambda), the pressure jumnp parameter.

The program solves the surface equations and determines

the wall contact angle. The user changes the value for

RLMB until the desired value of wall contact angle is

achieved. It should be noted that the solution is highly
sensitive to the value of RLMB. The user should use small

values (RLMB=0.2) initially and iterate from there.

A version of this program which employs a Newton-Raphson

technique for converging on a value of RLMB was prepared.
This version is highly problem dependent and is not

available for general use.

MAIN VARIABLES:

t(1) - Length along the surface of the liquid

t(2) - Upper limit for surface length (prevents runaway solution)
t(3) - Integration step size along the surface

t(4) - Interval at which to record the solution parameters

x(1) - Height of the free surface, Z

x(2) - First derivative of surface height, dZ/ds

x(3) - Radius of the free surface from tank centerline, R

x(4) - First derivative of radius, dR/ds

n - Order of system (always set to nm4)

m - Number of outputs (set to m=8)

The values for surface length, height, and radius are

normalized with respect to the tank wall radius.

This routine uses no set of units.

INPUTS (read from the file called GENSURF.INP) :

tinit - Initial value of surface length

fintim - Final value of surface length

step - Integration step size along the surface

prtstp - Surface length interval for saving solution parameters

issflg - Variable step size flag

dtllim - Lower limit for step size

dtulim - Upper limit for step size
errul

errll

iplot
z0

dzds0

r0

drds0

bond

thet0

- Upper limit on error criteria for variable step size

- Lower limit on error criteria for variable step size

- Flag for line printer plot

- Initial condition for surface height

- Initial condition for surface height derivative
- Initial condition for surface radius

- Initial conditino for surface radius derivative

- Bond Number

- Contact angle at wall

********************** -0001
********************** -0002

-0003

-0O04

-0005

-0006

-0007

-0008

-0009

-0010

-0011

-0012

-0013

-0014

-0015

-0016

-0017

-0018

-0019

-0020

-0021

-0022

-0023

-0024

-0O25

-0026

-0027

-0028

-0029

-0030

-0031

-0032

-0033

-0034

-0035

-0036

-0037

-0038

-0039

-0O4O

-0041

-0042

-0043

-0044

-0045

-0046

-0047

-0O48

-0049

-0050

-0051

-0052

-0053

-0054

-0055
-0056

-0057

-0058

-0059

-0060

-0061

-0062

-0063
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c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c
c

c

c

c

c

c

c

c

c

c

c

c

c

C--"

iclspr - Flag for tank type = 0 for spherical tank
.ne. 0 for cylindrical tank

INPUT from the keyboard:

rlmb - Pressure jump parameter

Suggested Values for Inputs

tinit - 0.0

fintim - 5.0

step - 0.001

prtstp - 0.01

issflg - 0

dtllim - .001

dtulim - .05

errul - .005

errll - .001

iplot - 0

Solution should always start at s=0.0

Set to a large value, prevents runaway solution

Suggested value

Suggested value
Solution should use constant step (issflg = 0)

Performance is erratic for variable step (issflg=l)

Dummy variable for issflg=0

Dummy variable for issflg=0

Dummy variable for issflg=0

Dununy variable for issflg=0

0 for no line printer plot

1 for line printer plot at end of output

z0 - -0.06

dzds0 - 0

r0 - 0

drds0 - 1

bond - 1

thet0 - 5

iclspr - 0
rlmb - 2.980654

These values are for 75% full spherical tank

FILES:

GENSURF.OUT - Holds ASCII output for line printer

GENSURF.ASC - High precision output table use by other routines

GENSURF.INP - Parameter input file

implicit double precision (a-h, o-z)

common /sim/ x(20), dx(20), t(4), y(20), n, m , iplot, issflg,

1 dtulim, dtllim, tprt

common /param/ bond, rlmb, z0, thet0, pi, iqflg, iclspr

common/tsave/ tinit

common /save/ xsavem(20),xsave(20),tsavem, tsave

common /error/ errmax, ierrmx, ierrfl,errll,errul,xtrlim

-0064

-0065

-0066

-0067

-0068

-0069

-0070
-0071

-0072

-0073
-0074

-0075

-0076

-0077

-0078

-0079
-0080

-0081

-0082

-0083

-0084

-0085

-0086

-0087

-0088

-0089

-0090

-0091

-0092

-0093

-0094

-0095

-0096

-0097

-0098

-0099

-0100

-0101

-0102

-0103

-0104

-0105

-0106

-0107

-0108

-0109

-0110

-0111

-0112

-0113

c

c

c-

Order of system and number of outputs

Set the value of pi for degree-radian conversions

-0114

-0115

-0116

C ....

n=4

m=8

pi = 4.d0 * atan(l.d0)

-0117

-0118

-0119

-0120

-0121

c

c

Open all files here
-0122

-0123

open(unit=l, file='GENSURF.out ', status='unknown ')
open(unit=2, file='GENSURF.asc', status='unknown ')

open(unit=3, file='GENSURF.inp', status-'old', mode='read ')

-0124

-0125

-0126

B-16



c -0127

c Get all of the input parameters
C .....................................................

read(3,*) tinit

read(3,*) fintim

read(3,*) step

read(3,*) prtstp

read(3,*) issflg

read(3,*) dtllim

read(3,*) dtulim

read(3,*) errul

read(3,*) errll

read(3,*) iplot

read (3, *) z0

read (3, *) dzds0

read (3, *) r0

read (3, *) drds0

read(3,*) bond

read(3,*) thet0

read(3,*) iclspr
C .......................

c Get the jump parameter from the user
C .............................

print*,' Enter the guessed value of pressure jump condition'

print*,' for the desired contact angle=', thet0

read(5,*) rlmb
C ................

c Transfer inputs to program variables and other setup stuff
C .............

t (i)=tinit

t (2)= fintim

t (3) = step

t (4) = prtstp

x(1) = z0

x(2) = dzds0

x(3) = r0
x(4) = drds0

thet0 = thet0 * pi/180.

xtrlim = (t (2)-t (1) ) /t (3)

C .........

* I0.

c Record input variables for the user
C ...............................

write (i, 16010)

write(l,16020) tinit,fintim, step,prtstp

write(l,16030) issflg, errul,errll, dtulim,

write(l,16040) iplot
write(l,16050) x(1), x(2), x(3), x(4)

write(l,16060) bond, thet0*180./pi, rlmb

if (iclspr .eq. 0) then

write(l,16070) iclspr
else

write(l,16080) iclspr
endif

dtllim, xtrlim

C .............

c Begin the solution

C ........

call dysim
C ................

C Report the results to the user
C .............

if (iclspr .eq. 0) then

-0128

-0129

-0130

-0131

-0132

-0133

-0134

-0135

-0136

-0137

-0138

-0139

-0140

-0141

-0142

-0143

-0144

-0145

-0146

-0147

-0148

-0149

-0150

-0151

-0152

-0153

-0154

-0155

-0156

-0157

-0158

-0159

-0160

-0161

-0162

-0163

-0164

-0165

-0166

-0167

-0168

-0169
-0170

-0171

-0172

-0173

-0174

-0175

-0176

-0177

-0178

-0179

-0180

-0181

-0182

-0183

-0184

-0185
-0186

-0187
-0188

-0189
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c

angl = -pi/2.

ang2 = pi/2.

if (dx(1) .gt. 0.) angl = atan(-dx(3)/dx(1))

if (x(1) .it. I.) ang2 = asin(x(1))

angle = ang2 - angl
else

angle = pi/2.
if (abs(dx(1)) .le. i.) angle = acos(dx(1))

endif

print*,' tried for contact angle = ',thet0*180./pi

print*,' found contact angle = ', angle * 180./pi

print*,' rlmb = ',rlmb
write(l,16999) rlmb, angle*180./pi

stop

c

16010 format(lhl/' Liquid Free Furface')

16020 format(///5x,'Starting Value of Surf. Length [t(1)] = ',

1 t48,1pe12.5,' sec',/

1 5x,'Final Value of Surf. Length [t(2)] = ',

1 t48,1pe12.5,' sec',/

1 5x,'Step Size [t(3)] = ',

1 t48,1pe12.5,' sec',/

2 5x,'Print/Plot interval [t(4)] = ',

3 t48,1pe12.5,' sec',/)

16030 format(/ 5x,'Step Size Control Flag (issflg) = ',t48,i2,/

1 5x,'Upper Limit on Error Estimate (errul) = ',

1 t48,1pe12.5,/

2 5x,'Lower Limit on Error Estimate (errll) = ',

1 t48,1pe12.5,/

1 5x,'Upper Limit on Step Size

1 t48,1pe12.5,' sec',/

1 5x,'Lower Limit on Step Size

1 t48,1pe12.5,' sec',/

1 5x,'Maximum Number of Steps

1 t48,1pe12.5,/)
16040 format(/ 5x,'Printer/Plot flag

16050 format(/ 5x,'Initial Height

1 t48,1pe12.5,' ',/

1 5x,'Initial dZds

1 t48,1pe12.5,' ',/

1 5x,'Initial Radius

1 t48,1pe12.5,' ',/

1 5x,'Initial dRds

1 t48,1pe12.5,' ',/)

16060 format(/ 5x,'Bond Number

a t48,1pe12.5,' ',/

1 5x,'Desired Contact Angle

a t48,1pe12.5,/

1 5x,'Pressure Jump condition

a t48,1pe12.5,/)

16070 format(/ 5x,'Tank shape flag (iclspr) = ',

1 t48,i3,' Spherical Tank')

16080 format(/ 5x,'Tank shape flag (iclspr) = ',

1 t48,i3,' Cylindrical Tank')

16999 format(///' For Pressure Jump Parameter (rlmb) = ',1pe12.5/

1 ' Found Contact Angle = ',1pe12.5)

end

(dtulim) = ',

(dtllim) = ',

(xtrlim) = ',

(iplot) = ',t48,i2,/)

Ix(1)] = ',

[x(2)] = ',

[x(3)] - ',

Ix(4)] = ',

(bond) = ',

(thet) = ',

(rlmb) = ',

-0190

-0191
-0192

-0193
-0194

-0195

-0196

-0197

-0198

-0199

-0200

-0201

-0202

-0203

-0204

-0205

-0206

-0207

-0208

-0209

-0210

-0211

-0212

-0213

-0214

-0215

-0216

-0217

-0218

-0219

-0220

-0221

-0222

-0223

-0224

-0225

-0226

-0227

-0228

-0229

-0230

-0231

-0232

-0233

-0234

-0235

-0236

-0237

-0238

-0239

-0240

-0241

-0242

-0243

-0244

-0245

-0246

-0247

-0248
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************************ S U B R O U T I N E
**************************** D E R F U N

subroutine derfun

c

c

c

c

c

c

c

************************ -0249
************************ -0250

Defines the derivative functions to be integrated

These functions are the first order derivatives that define the

system of model equations to be solved.

implicit double precision (a-h,o-z)

common /sim/ x(20), dx(20), t(4), y(20), n, m , iplot, issflg,
1 dtulim, dtllim, tprt

common /param/ bond, rlmb, z0, thet0, pi, iqflg, iclspr
co_on/tsave/ tinit

common /save/ xsavem(20),xsave(20),tsavem, tsave

common /error/ errmax, ierrmx, ierrfl,errll,errul,xtrlim

c

c

c Derivative functions

-0251

-0252

-0253

-0254

-0255

-0256

-0257

-0258

-0259

-0260

-0261

-0262

-0263

-0264

-0265

-0266

-0267

-0268

-0269

-0270

-0271

dx(3) = x(4)

dx(1) = x(2)

if (t(1) .eq. 0.) then
dx(2) = 0.5 * rlmb

else

dx(2) = (bond*(x(1)-z0) + rlmb)*dx(3) - dx(1)*dx(3)/x(3)

endif

if (x(3) .ne. 0.) then

dx(4) = -(bond*(x(1)-z0)+rlmb)*dx(1) + dx(1)*dx(1)/x(3)
else

dx(4) = 0.
endif

c

c Check radius to determine if we are at tank wall

C ........................

iqflg = 0

wllchk = sqrt(x(1)*x(1) + x(3)*x(3))

if (iclspr .ne. 0) wllchk = x(3)

if (wllchk .ge. I. .or. x(3) .le. 0.) iqflg = 1
if (iclspr .ne. 0 .and. dx(3) .le. 0.) iqflg = 1

Enter outputs to be printed = y(1) through y(m)

Originally:

y(1) = Surface height, Z

y(2) = Surface height first derivative, dZ/ds

y(3) = surface height second derivative, d2Z/ds2

y(4) = Surface radius, R

y(5) = Surface radius first derivative, dR/ds

y(6) = surface radius second derivative, d2R/ds2

y(7) = local angle of surface with the 'horizontal'

y(8) = wall contact angle (valid only at last point in solution)
C .........

-0272

-0273

-0274

-0275

-0276

-0277

-0278

-0279

-0280
-0281

-0282

-0283

-0284

-0285
-0286

-0287

-0288

-0289

-0290

-0291
-0292

-0293

-0294

-0295

-0296

-0297

-0298

-0299

-0300

-0301

-0302

-0303

-0304

-0305

-0306

y(1) = x(1)

y(2) -- x(2)

y(3) = dx(2)

y(4) = x(3)

y(5) = x(4)

-0307

-0308

-0309

-0310

-0311
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c

c

y(6) = dx(4)

y(7) = 90.

if (dx(3) .ne. 0.) then

y(7) = atan(dx(1)/dx(3)) * 180. /pi
endif

if (iclspr .eq. 0) then

angl = -pi/2.

ang2 -- pi/2.

if (dx(1) .gt. 0.) angl--atan(-dx(3)/dx(1))

if (x(1) .It. i.) ang2 = asin(x(1))

y(8) = (ang2 - angl) * 180./pi

else

y(8) = pi/2.

if (abs(dx(1)) .le. I.) y(8) _ acos(dx(1))

if (dx(1) .ne. 0.) y(8) = atan(dx(3)/dx(1))

y(8) = y(8) * 180./pi
endif

return

end

-0312

-0313

-0314

-0315

-0316

-0317

-0318

-0319

-0320

-0321

-0322

-0323

-0324

-0325

-0326

-0327

-0328

-0329

-0330

-0331
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************************ S U B R O U T I N E ************************ -0332

**************************** D Y S I M ************************ -0333

C -0334

C Controls the solution process -0335

c -0336

c .... > This routine should not be changed by the user < .......... !!!!! -0337

c -0338

subroutine dysim -0339

implicit double precision (a-h,o-z)

common /sim/ x(20), dx(20), t(4), y(20), n, m , iplot, issflg,

1 dtulim, dtllim, tprt

common /param/ bond, rlmb, z0, thet0, pi, iqflg, iclspr
common/tsave/ tinit

common /save/ xsavem(20),xsave(20),tsavem, tsave

co_on /error/ errmax, ierrmx, ierrfl,errll,errul,xtrlim

dimension ti(1500), yp(20,1500), ymin(20), ymax(20)

integer*2 iy(20),plot(101), blank, star(20)

c

c

data iy, blank /20*'y(',' '/

data star/' 1' , '2' ,' 3', ' 4', ' 5' , ' 6', ' 7', ' 8',' 9','A' ,

1 'B' , 'C' , 'D' , 'E' , 'F' , 'G' , 'H' , ' I' , 'J' , 'K' /
C

C .............

c Setup for solution -- Print initial conditions

-0340

-0341

-0342

-0343

-0344

-0345

-0346

-0347

-0348

-0349

-0350

-0351

-0352

-0353
-0354

-0355

-0356

-0357

-0358

-0359
call derfun

tprt = t (I)

if ((t(2)-t(1))/t(4) .le. 1500.) go to i0

write (i, 16010) (iy (i) , i, i=l,m)

iplot=0

i0 ip=l

tl(ip) = t(1)

do 20 i--l,m

yp(i, lp) = y(i)
20 continue

write (i, 16001) (iy (i), i, i=l,m)
nflin = (m-10)/10

nllin = mod(m, 10)

ml = I0

if (m .le. i0) then
ml --m

write(l,16020) t(1), (y(i),i--l,ml)
else

write(l,16020) t(1), (y(i),i=l,ml)

if (nflin .eq. 0) then

write (I, 16030) (y (i), i=ll,m)
else

if (nllin .eq. 0) then

write (I, 16040) (y (i) , i=ll,m)
else

write (i, 16050) (y (i) ,i=ll,m)
endif

endif

endif

do 30 i--l,m

ymin(i) = 0.9999"y(i)

ymax(i) = 1.0001*y(i)
30 continue

k = 0

-0360

-0361

-0362

-0363

-0364

-0365
-0366

-0367

-0368

-0369

-0370

-0371

-0372

-0373

-0374

-0375

-0376

-0377

-0378

-0379

-0380

-0381

-0382

-0383

-0384

-0385

-0386

-0387

-0388

-0389

-0390

-0391

-0392

-0393

-0394
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C---

C Write initial conditions to high precision output file

c--

write (2, 16060) t(1), (y(i) ,i=l, 7)

C ....

c Solution loop

C

-0395

-0396

-0397

-0398

-0399

-0400

-0401

i00 continue

k = k + 1

if (k .gt. xtrlim) go to 999
ierrfl = 0

call rkint

if (ierrfl .ne. 0) go to 100

do 110 i--l,m

if(y(i) .it. ymin(i)) ymin(i) z y(i)

if(y(i) .gt. ymax(i)) ymax(i) = y(i)

110 continue

if (t(1) .ge. tprt .or. iqflg .eq. i) then

tprt = tprt + t(4)
nflin = (m-10)/10

nllin = mod(m, 10)

ml = i0

if (m .le. I0) then
ml --m

write(l,16020) t(1), (y(i),i=l,ml)

else

write (i, 16020) t(1), (y (i), i=l,ml)

if (nflin .eq. 0) then

write (i, 16030) (y (i), i=ll,m)

else

if (nllin .eq. 0) then

write (I, 16040) (y (i), i--ll,m)

else

write(l,16050) (y(i),i--ll,m)
endif

endif

endif

C o

c Write to unformatted file

write (2, 16060) t(1), (y (i), i=l, 7)

c-

c Save stuff for plotting if needed

C .....

-0402

-0403

-0404

-0405

-0406

-0407

-0408

-0409

-0410

-0411

-0412

-0413

-0414

-0415

-0416

-0417

-0418

-0419

-0420
-0421

-0422

-0423

-0424

-0425

-0426

-0427

-0428

-0429

-0430

-0431

-0432

-0433

-0434

-0435

-0436

120

if (iplot .eq. I) then

ip = ip + 1
tl(Ip) = t(1)

do 120 i=l,m

yp(i, lp) = y(i)
continue

endif

endif

C"

-0437

-0438

-0439

-0440

-0441

-0442

-0443

-0444

-0445

-0446

-0447

c Test for end

C----"

-0448

-0449

if (iqflg .ne. i) then
if (t(1) .it. t(2)) then

if ( (t (2) -t (1) ) .gt. t(3)) go to i00

t (3) = t(2) - t(1)

tprt = t (4)

go to i00

endif

endif

-0450

-0451

-0452

-0453

-0454

-0455

-0456

-0457
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C .............................

c Produce the line printer plot

C .............

c

c

if(iplot.eq.0) go to 300

write (i, 16070) (i, ymin (i) , i, ymax (i) , i=l,m)
write (I, 16080)

do 230 l=l,lp

do 210 j=l,101

210 plot (j) = blank

do 220 i=l,m

jp = 1

denom= ymax (i) - ymin (i)
if (denom .ne. 0.) then

jp = (yp(i,l)-ymin(i))/denom * i00 + 1
endif

plot (jp) = star(i)
220 continue

write(l,16090) tl(1),plot
230 continue

300 continue

return

c

O ............

C Error conditions

C ...........

999 continue

write(l,16999) float(k),xtrlim

print 16999, float(k),xtrlim

stop
c

16001 format('iTank Free Surface Solution'//

1 5x, 'T (i) ', 5x, I0 (a2, i2, ' ) ', 6x)/15x, i0 (a2,i2, ' ) ', 6x) )

16010 format( Ix,'***** Error Message from DYSIM *****',/,

*' The number of data points to be plotted exceeds the dimensioned

-0458

-0459

-0460

-0461

-0462

-0463

-0464
-0465

-0466

-0467

-0468

-0469

-0470

-0471

-0472

-0473

-0474

-0475

-0476

-0477

-0478

-0479

-0480

-0481

-0482
-0483

-0484

-0485

-0486

-0487

-0488

-0489

-0490

-0491
-0492

-0493

*number of 1500.'/' Decrease final time or increase print interval. -0494
*Plot will be supressed.') -0495

16020 format (ix, lpdl0.3,1pl0dll.3) -0496

16030 format(15x, lpl0dll.3 ) -0497

16040 format (10 (15x, lpl0dll.3/),15x, lpl0dll.3 ) -0498

16050 format (10 (15x, lpl0dll.3/),15x, lpl0dll.3 ) -0499
16060 format(Ip8d20.10) -0500

16070 format('iPlot of y(i) versus t(1)'// -0501

* (12x,'YMIN(',i2,') m ',Ipdl0.3,5x,'YMAX(',i2,') =',Ipdl0.3)) -0502

16080 format(/5x,'time',t13,'0.',34x,' (y(i)-ymin(i))/(ymax(i)-ymin(i))', -0503

* tl14,'l.'/13x, i0 (' ! ......... '),'!')

16090 format (Ix, lpdll.4, ix, 101al)

16999 format(lh ,'******* Program Terminated ********'/

1 ' Iteration count -- ',Ipd12.4/

2 ' Greater than limit of',ipdl2.6)
c

end

-0504

-0505

-0506

-0507

-0508

-0509

-0510
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************************ S U B R O U T I N E ************************ -0511

**************************** R K I N T ************************ -0512

C -0513

C Performs the integration of the derivatives at each step in the -0514
c solution -0515

c -0516

c .... > This routine should not be changed by the user < .......... !!!!! -0517

c

c

-0518

-0519

subroutine rkint -0520

c -0521

implicit double precision (a-h,o-z) -0522
c -0523

common /sim/ x(20), dx(20), t(4), y(20), n, m , iplot, issflg, -0524

1 dtulim, dtllim, tprt -0525

common /param/ bond, rlmb, z0, thet0, pi, iqflg, iclspr -0526
common /save/ xsavem(20),xsave(20),tsavem, tsave -0527

common /error/ errmax, ierrmx, ierrfl,errll,errul,xtrlim -0528

c -0529

dimension a(4,20),c(4) -0530

c -0531

c(1) = 0.5 -0532

c(2) = 0.5 -0533

c(3) = 1.0 -0534

c(4) = 0.0 -0535

do i0 i=l,n -0536

I0 xsave(i) = x(i) -0537

tsave = t(1) -0538

do 40 k=l,4 -0539
call derfun -0540

do 20 i=l,n -0541

20 a(k,i) = dx(i) -0542

do 30 i=l,n -0543

30 x(i) = xsave(i) + c (k) *a (k, i) *t (3) -0544

t(1) = tsave + c(k)*t(3) -0545

40 continue -0546

errmax = 0. -0547

do 50 i=l,n -0548

x(i) = xsave(i) + -0549

1 t(3)/6.0*(a(l,i)+2.0*a(2, i) +2 .0*a (3, i)+a(4,i)) -0550

denom= a (2, i) -a (l, i) -0551

xnum = a(3,i) - a(2,i) -0552
iiii = 0 -0553

if (denom .ne. 0.) then -0554

err = 2.* abs((a(3,i)-a(2,i))/denom) -0555

iiii = i -0556

elseif (xnum .eq. 0) then -0557
err = errll*0.998 -0558

else -0559

err _ errll*l.002 -0560

endif -0561

errmax = max(err, errmax) -0562

if (errmax .eq. err) ierrmx = iiii -0563

50 continue -0564

t(1) = tsave + t(3) -0565

c ....... -0566

c check step size -0567
c ...... -0568

ierrfl = 0 -0569

if (issflg .he. I) go to 506 -0570

if (errmax .gt. errul) then -0571
t(3) = t(3) * 0.5 -0572

if (t(3) .le. dtllim) then -0573
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c

c

c

t(3) = dtllim
endif

t (i) = tsave

do 505 i=l,n

505 x(i) = xsave(i)
ierrfl = 1

go to 510
endif

if (errmax .it. errll) t(3) --t(3) * 1.05

if (t (3) .gt. dtulim) t(3) = dtulim
506 continue

call derfun

510 continue

return

end

-0574

-0575

-0576

-0577

-0578

-0579

-0580
-0581

-0582

-0583

-0584

-0585

-0586

-0587

-0588

-0589
-0590

-0591
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COMPUTER CODE
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PRECEDING PAGE BLANK NOT F!L.MED
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I LOW-G.BAS

' This program uses the trial functions from ADINA to compute the low-g slosh natural

' frequency• the slosh mode shape, the slosh force and torque, and the parameters

' of an equivalent mechanical pendulum model. No more than THREE trial modes are

' allowed. The number of nodal points along the surface line THETA = 0 must be

' >= 13 and <= 25.

I

' Subroutines defined used in this program.
I

DECLARE SUB AIntegrals (F! (), APartial! (), Coord! (), WH! (), Result! ())

DECLARE SUB APart (Coord! (), Kappa2! (), WD2! (), WH! (), Result! ())

DECLARE SUB BIntegrals (Coord! (), Func! (), WH! (), Result! ())

DECLARE SUB CompDerivs (Coord!(), Value!(), Deriv!())

DECLARE SUB Deriv (Code%, Coord!(), FuncDat!(), FuncDeriv!())

DECLARE SUB InputScreen (FileNo%, Code%, TempS(), TempNo())

DECLARE SUB LiqVol (Surf!(), Wall!(), Ansl!, Ans2!, DZ!, DeltaElev!,

SurfElev!)

DECLARE FUNCTION PadZero$ (A!, NoDecs!, NoBeforeDec!)

DECLARE SUB ParamModel (MOF!, F2!, SM!, SM2!, PL!, SC!, HO!)

DECLARE SUB PotNorm (SurfP! (), WalIP! ())

DECLARE SUB PrintOut (F2!, F! (), SM2!, PL!, HO!, CG!, SC!, BI!(), PC%)

DECLARE SUB PrintOut2 (S! (), WH! (), BI! (), F2!, F! ())

DECLARE SUB OutputScreen (F2!, SM2!, PL!, HO!, CG!, SC!, BI! (), PCode%)

DECLARE SUB Rad (Coord! (), Temp! ())

DECLARE SUB Root (Guess!, DT!, CI! (), C2! (), Answer!)

DECLARE SUB SloshM (S! (), W!(), PS! (), PW! (), TF! (), BI! (), SlsFrq!, Ansl!,
Ans2 ! )

DECLARE SUB TextInl (T$, Max%, NumOnly%, CapsOn%, ExitCode%, Colr%)

DECLARE SUB Vector (F2!, CI!(), C2! (), Result!())

DECLARE SUB WaveHite (Coord! (), NodeDatS!(), TempNo!())

' The following routines are assembly-language routines from the QUICKPAK library.

' Both are used only in the screen input routine "TextInl". "Peekl%" reads a byte in

• memory; its use here is to determine what kind of monitor is being used, so it can

• be deleted without problem. "QPrint" Just prints a text string on the monitor

' screen rapidly, so it can be replaced if needed by a combination of regular LOCATE

• statements and PRINT statements.

DECLARE FUNCTION Peekl% (segment, Address)

DECLARE SUB QPrint (X$, Colr%, Page%)

DIM ModeS(4, 25), ModeW(4, 25), WavHite(3, 25)

DIM CoordS(7, 25), CoordW(3, 25), RadCurv2(25)

DIM TempStor$(10, 25)

DIM Freq (4)

DIM WavDerivl(3, 25), WavDeriv2(3, 25)

DIM AI(3, 25), A(3, 3), B(4, 4), Vec(3)

COMMON NoModes%, ModeNo%, NoNodes%, ConstMass, ExpMass, BondNo

COMMON Ang, FillLevel, LiqVolume, LastDZsurf, DeltaElev, SurfElev

CLS ' clear the screen for the data input routines

' SEGMENT 1 SEGMENT 1 SEGMENT 1

' The code in Segment 1 does the following: (i) puts the name of the program on the

' screen, (2) asks for the number of trial modes and the number of nodal points

' for each mode along the free surface and the wall, and (3) whether the data will

' be entered from the keyboard or read in from disk files named COORD.DAT and

PRECEDING PAGE BLANK NOT FILMED



' MODE.DAT. The code uses some subroutines from QUICKPAK to draw boxes around the

' instruction and input text; the subroutine can be deleted if the QUICKPAK

' library is not available.

Start :

' Print the program title in a box

CALL Box(i, 5, 6, 75, 2, 12, -I)
COLOR 14: LOCATE 3, 14

PRINT "MINIMIZE INTEGRAL TO FIND THE LOW-G SLOSH POTENTIAL"

LOCATE 4, 17
PRINT "BY USING THE STRUCTURAL CODE TRIAL FUNCTIONS"

' Draw boxes and give instructions for entering the input data:

B$ - SPACES (75) ' use B$ to clear parts of the screen later

COLOR 7: LOCATE 7, 25: PRINT "Hit RETURN after each entry"

ResponseS = "N"

WHILE ResponseS = "N" ' repeat instructions until input data is okay

CALL Box(8, 17, i0, 22, i, 14, -i)

LOCATE 9, 6, i, 5, 7: PRINT "Bond No. = "

CALL Box(8, 36, i0, 39, I, 14, -i)

LOCATE 9, 24: PRINT "Filling % = "

CALL Box(8, 73, i0, 76, i, 14, -i)

LOCATE 9, 43: PRINT "Contact angle at wall (deg) = "

CALL Box(ll, 32, 13, 37, i, 14, -I)

LOCATE 12, 6: PRINT "Mass function: Exponent -- "

CALL Box(ll, 54, 13, 60, i, 14, -i)

LOCATE 12, 42: PRINT "Constant _ "

' Now get the input:

LOCATE 9, 18: INPUT "", BondNo ' Bond number

LOCATE 9, 37: INPUT ...., FillLevel ' tank fill level 0 - 100%

LOCATE 9, 74: INPUT ...., Ang ' contact angle at the wall (deg)

LOCATE 12, 33: INPUT "", ExpMass ' constant in the mass distribution

LOCATE 12, 55: INPUT "", ConstMass ' exponent in the mass distribution

' Is the data okay?

LOCATE 14, 10

INPUT "Are all of the input numbers okay (Y,N) ? ", Responses

Responses = UCASE$(ResponseS) ' convert to uppercase

IF Responses - "N" THEN

LOCATE 8, 1 ' clear out the data
FOR I = 1 TO 6

PRINT B$

NEXT I

END IF

WEND ' end of the "WHILE-WEND" input loop

LOCATE 14, I: PRINT B$ ' clear out the line of text

' Get the number "NoModes%" of trial modes and the number "NoNodes%" of

' nodal values per mode along THETA=0 from the structural simulation, and

' the trial natural frequencies:

ResponseS z "N"

WHILE ResponseS = "N" ' do until the data is okay
CALL Box(14, 52, 16, 54, I, 14, -i)

LOCATE 15, 6

PRINT "How many trial modes do you want to consider? "

CALL Box(16, 64, 18, 67, i, 14, -I)

LOCATE 17, 6

PRINT "How many nodal values are there at the surface and wall? "

ModeAgain :
LOCATE 15, 53: INPUT "", NoModes%
IF NoModes% > 3 THEN CALL Chime(6): GOTO ModeAgain

NodeAga in :
LOCATE 17, 65: INPUT ...., NoNodes%



IF NoNodes% < 13 OR NoNodes% > 25 THEN CALL Chime(6) : GOTO NodeAgain

LOCATE 20, 6: PRINT "Eigenvalue of trial modes = "

FOR NF% = 1 TO NoModes%

IColumn% = 23 + Ii * NF%

IColumn2% = IColumn% + i0

CALL Box(19, IColumn%, 21, IColumn2%, I, 14, -I)

LOCATE 20, IColumn% + i: INPUT ...., Freq(NF%)
NEXT NF%

LOCATE 22, I0

INPUT "Are these last input numbers okay (Y,N) ? ", ResponseS

Responses = UCASE$(Response$) ' convert to uppercase

IF ResponseS = "N" THEN

LOCATE 14, 1

FOR I = 1 TO i0 ' clear out the data

PRINT B$

NEXT I

END IF

WEND ' end of "WHILE-WEND" loop for modal data

LOCATE 22, i: PRINT B$

' Find out whether whether the nodal coordinates, trial potential values,

' etc., will be given from the terminal or from data files:

FileAgain:

CALL Box(22, 76, 24, 78, i, 14, -I)

LOCATE 23, 6

PRINT "DO YOU WANT TO INPUT NODAL DATA FROM THE (i) TERMINAL OR (2) FILES ? "

LOCATE 23, 77: INPUT ...., ResponseS

Answer = VAL(Response$) ' If Response$=l the data will be typed in
IF Answer = 1 OR Answer = 2 THEN

GOTO Cont

ELSE

CALL Chime(6) ' input a number <> 1 or 2 or other bad answers

GOTO FileAgain

END IF

' END OF SEGMENT i END OF SEGMENT 1

• SEGMENT 2 SEGMENT 2 SEGMENT 2

' This segment of code gets (I) coordinates of the equilibrium free surface•

' (2) the required derivative values of the equilibrium free surface, (3)

' the coordinates of the finite element nodes along THETA=0, and (4) the

• values of the trial potentials at these nodes.

Cont:

SELECT CASE Answer

CASE 1 ' Type INPUT at the terminal

' Option to type in the data input ,

The following segment gets the typed in data using subroutines. The

' subroutines use the QUICKPAK routine TEXTIN!.BAS to allow data

' correction anywhere on the screen, without including a lot of code.

' The subroutine can be deleted if QUICKPAK is not available but the

' input requests will have to be redone to allow a mistake made in

' typing in the input to be corrected. The input is saved in files

' COORD.DAT (for the R,S coordinates and R',Z',R",Z" of each nodal

' point) and MODE.DAT (for the potential values at each node).

' Get data for surface nodes and store in array "CoordS()." Row 1

' of CoordS stores the node number• row 2 stores the R coord, row 3

• stores the S coord. The derivative R' is stored in row 4, Z' is

' stored in row 5, R" is stored in row 6, and Z" is stored in row 7.

' The first screen gets the node number and R and Z. The second screen

' gets R' and Z'. The third screen gets R" and Z"



CALL InputScreen(0, i, TempStor$(), CoordS()) ' get R and S

CALL InputScreen(0, 2, TempStor$(), CoordS()) ' R' and Z'

CALL InputScreen(0, 3, TempStor$(), CoordS()) ' R" and Z"

' Get the potential values at each surface node and store in array

' ModeS(). Row 1 is the node # from CoordS(), row 2 the potential

' values for the first mode, row 3 the values for the second mode,

' and so on -- Row I+l is the Mode I data.

FOR K i 1 TO NoModes%

ModeNo% = K

CALL InputScreen(0, 4, TempStor$(), ModeS())

NEXT K

' Get the data for the R,Z coordinates of the wall nodes and store in

' array CoordW(). Row 1 is the node # data, Row 2 is R, and Row 3 is Z.

' First, though, empty out the unneeded surface data in TempStor$.

FOR I z 1 TO i0

FOR J = 1 TO 25

TempStor$(I, J) = ""

NEXT J

NEXT I

CALL InputScreen(0, 5, TempStor$(), CoordW()) ' R and Z

' Get potential values for each wall node point and store in ModeW().

' Row 1 is the node #, Row 2 is the first mode, and so on.

FOR K = 1 TO NoModes%

ModeNo% = K

CALL InputScreen(0, 6, TempStor$(), ModeW())

NEXT K

, End of option to type in the input data

' Start of option to enter data from disk files

CASE 2

' Read the surface and wall coordinate data from COORD.DAT file into

' the array TempStor$(). Rows i - 7 of TempStor$() will contain the

' surface node #'s and coord, data, and rows 8 - i0 will contain the

' wall node #'s and coord, data.

OPEN "COORD.DAT" FOR INPUT AS #I

FOR I = 1 TO I0

FOR J = 1 TO NoNodes%

INPUT #i, TempStor$(I, J)

NEXT J

NEXT I

CLOSE #I

' Send the surface coordinate data forward for display on the screen

' and ask the user if the data is okay. Note that COORD.DAT is

' erased and then rewritten after verification.

CALL InputScreen(l, I, TempStor$(), CoordS())

CALL InputScreen(l, 2, TempStor$(), CoordS())

CALL InputScreen(l, 3, TempStor$(), CoordS())

' Read the surface and wall modal values form MODE.DAT. The surface

' values are stored in TempStor$(), without deleting the surface

' node numbers. The wall values are stored temporarily in the array

' ModeW() and will later be read into TempStor$().

OPEN "MODE.DAT" FOR INPUT AS #i

FOR J = 1 TO 2 * NoModes%

FOR I = 1 TO NoNodes%

IF J = 1 THEN TempStor$ = STR$(CoordS(I, I)) ' node #

IF J <= NoModes% THEN INPUT #I, TempStor$(J + I, I)

IF J > NoModes% THEN



JJ = J - NoModes%
INPUT#i, ModeW(JJ, I)

ENDIF
NEXTI

NEXTJ
CLOSE#i
' Sendthe surface modedata forward for display on the screen and
' ask the user if the data is okay. MODE.DATis erased and then
' rewritten with the verified data.
FORI = 1 TO NoModes%

ModeNo%= I
CALL InputScreen(l, 4, TempStor$(), ModeS())

NEXTI
' Nowmovethe wall coordinate data from the last three rows of
' TempStor$()to the first three rows, so that the data will be
' displayed correctly on the screen. Note that the last three rows
' were not overwritten by the surface data input routines above.
FORI = 1 TONoNodes%

TempStor$(l, I) = TempStor$(8, I)

TempStor$(2, I) = TempStor$(9, I)

TempStor$(3, I) = TempStor$(10, I)

NEXT I

' Send the wall coordinate data forward for display on the screen and

• ask the user if the data is okay. COORD.DAT is not erased by this

' operation, but the verified data overwrites the previous wall data.

CALL InputScreen(l, 5, TempStor$(), CoordW())

' Move the wall coord, data from the array CoordW() to the first row

' of TempStor$() and the wall modal data from the array ModeW() to

' rows 2, 3, and 4.

FOR I = 1 TO NoModes%

FOR J = 1 TO NoNodes%

IF I = 1 THEN TempStor$(l, J) _ STR$(CoordW(I, J))

TempStor$(I + I, J) = STR$(ModeW(I, J))

NEXT J

NEXT I

' Send the wall modal data forward for display on the screen and ask

' the user to verify the data. MODE.DAT is not erased by this

' operation, but the verified data overwrites the previous wall data.

FOR K = 1 TO NoModes%

ModeNo% = K

CALL InputScreen(l, 6, TempStor$(), ModeW())

NEXT K

' All the data has been displayed, checked, rewritten to COORD.DAT and

' MODE.DAT, and stored in Coord() and Mode() arrays.

' End of option to enter data from disk files

CASE ELSE ' Just a safety check

CLS : CALL Chime(6) : GOTO Start

END SELECT ' end of loops to get input data

' END OF SEGMENT 2 END OF SEGMENT 2

' SEGMENT 3 SEGMENT 3 SEGMENT 3

' This segment does the numerical integrations. First• the trial potentials

• are normalized to have a maximum magnitude of one.

CALL PotNorm(ModeS(), ModeW())

' Compute the mean radius squared of the free surface at each node:

CALL Rad (CoordS (), RadCurv2 ())



' Computethe partial waveheight for the trial functions WH= M'Potential
' whereM=themassdistribution = ConstMass- (S/Smax)^ExpMass
CALLWaveHite(CoordS(), Modes(), WavHite())
' Computethe derivatives: R(WH)' and (R(WH)')' By numerical experi-
' mentation, it has found that the derivative (R(WH)')' mustbe formed
' slightly differently than R(WH)'
• Computethe (WH)' derivative
CALLDeriv(l, CoordS(), WavHite(), WavDerivl())
' Nowmultiply by R to get R(WH')
FORI = 1 TONoModes%

FORJ = 1 TONoNodes%
WavDerivl(I, J) = WavDerivl(I, J) * CoordS(2, J)

NEXT J

NEXT I

' Compute the (R(WH)')' derivative

CALL Deriv(2, CoordS(), WavDerivl(), WavDeriv2())

• Compute and store in AI() the j-th part of the A() integrals. This

' is the part that is multiplied by WH-j and then integrated.

CALL APart(CoordS(), RadCurv2(), WavDeriv2(), WavHite(), AI())

' Compute the total Aij integrals

CALL AIntegrals(Freq(), AI(), CoordS(), WavHite(), A())

, Compute the Bij integrals

CALL BIntegrals(CoordS(), ModeS(), WavHite(), B())

' Compute the eigenfrequencies and eigenvectors. We must find the

, eigenfrequencies by trial and error since A() is not

' symmetric, and so most eigenvalue extraction routines will not work.

FirstGuess = 0: Delta = .i

CALL Root(FirstGuess, Delta, A(), B(), Freq2)

' The first Eigenfrequency Freq2 has been computed• so now compute

' the eigenvectors Vec() (or modal participation factors)

CALL Vector(Freq2, A(), B(), Vec())

, END OF SEGMENT 3 END OF SEGMENT 3

, SEGMENT 4 SEGMENT 4 SEGMENT 4

' This segment computes the parameters of the mechanical model.

' First, calculate the volume of liquid (non-dimensional): LiqVolume

CALL LiqVol(CoordS(), CoordW(), LiqVolume, LiquidCG, LastDZsurf, DeltaElev,

SurfElev)

' Calculate the non-dimensional slosh mass (ratio to liquid mass that

' fills the tank completely).

CALL SloshM(CoordS(), CoordW(), ModeS(), ModeW(), Freq(), Vec(), Freq2, SMass,

MFRatio)

, Compute the other mechanical model parameters

CALL ParamModel(MFRatio, Freq2, SMass, SMass2, PendL, Spring, HO)

• END OF SEGMENT 4 END OF SEGMENT 4

, SEGMENT 5 SEGMENT 5 SEGMENT 5

' This segment displays the results on the terminal screen, and also prints

' the results out if the user desires. The printed results can include

' the details of the wave height amplitude along the surface.

CALL OutputScreen(Freq2, SMass2, PendL, HO, LiquidCG, Spring, Vec(),

PrintCode%)



IF PrintCode% = 0 THEN END ' user did not want printout

CALL PrintOut(Freq2, Freq(), SMass2, PendL, HO, LiquidCG, Spring, Vec(),
PrintCode%)

IF PrintCode% = 2 THEN ' user also wanted wave height data

CALL PrintOut2(CoordS(), WavHite(), Vec(), Freq2, Freq())
END IF

SCREEN 0 ' restore a clean screen

END



' **************************** AINTEGRALS**************************
' This routine computeseach entry in the Aij matrix by numerical

integration, using linear interpolation. F() is the ADINAeigenvalues,
APartial() is the j-th part of each integrand APart(), Coord(3,I) is the
"S" coordinate of eachnodepoint, WH()is the waveheight (not including
the freq. term), and the answersare stored in Result() to be returned
to the calling program.

SUB AIntegrals (F(), APartial(), Coord(), WH(), Result())

SHARED NoNodes%, NoModes%

FOR I = 1 TO NoModes%

FOR J = 1 TO NoModes%

Sum =0

AFreq = F(J)
FOR K = 1 TO NoNodes%

SELECT CASE K ' First determine the right Delta-S

CASE 1 ' first delta-S interval

Delt = (Coord(3, 2) -Coord(3, i)) / 2

CASE NoNodes% ' last delta-S interval

Delt = (Coord(3, NoNodes%) - Coord(3, (NoNodes% - i))) / 2

CASE ELSE ' interior delta-S interval

Delt = (Coord(3, (K + I)) - Coord(3, (K - i))) / 2

END SELECT

Sum = Sum + APartial(J, K) * WH(I, K) * Delt

NEXT K

Result(I, J) = Sum * AFreq
NEXT J

NEXT I

END SUB



• ***W**W*_W*_****W***W***_***** APART ************************w**_

This subroutine computes the j-th part of the AiJ integral at each

node point, for later numerical integration. Coord(2, I) is the "R"

coordinate of each node and Coord(4,1) is R', Curvat2() is the square
of the mean curvature at each node, WD2() is the second derivative

computed by Deriv(2) at each node, WH() is the wave height (not

including freq) at each node, and the answer is stored in Result()

to be sent back to the calling program.

SUB APart (Coord(), Curvat2(), WD2(), WH(), Result())

SHARED NoModes%, NoNodes%, BondNo

FOR I = 1 TO NoModes%

FOR J = 1 TO NoNodes%

R = Coord(2, J) : RPrime = Coord(4, J) : C2 = Curvat2(J) * Coord(2, J)
IF J _ 1 THEN

Second = (C2 - BondNo * R * RPrime) * WH(I, J)
ELSE

Second = (C2 - 1 / R - BondNo * R * RPrime) * WH(I, J)
END IF

First = WD2(I, J)

Result(I, J) = First + Second
NEXT J

NEXT I

END SUB



' ***************************** BINTEGRALS**************************
This subroutine computesthe elementsof the array Bij by numerical
integration, using linear interpolation. Coord(2,I) is the "R"
coordinate of each node, Func() is the normalizedpotentials, WH()is
the waveheight (not including the freq. term), and the answersare
stored in Result() to be returned to the calling program.

SUBBIntegrals (Coord(), Func(), WH(), Result())
SHAREDNoNodes%,NoModes%
FORI = 1 TO NoModes%

FOR J = 1 TO NoModes%

Sum =0

FOR K = 1 TO NoNodes%

SELECT CASE K ' First compute the correct Delta-S
CASE 1 ' first Delta-S interval

Delt m (Coord(3, 2) -Coord(3, I)) / 2

CASE NoNodes% ' last Delta-S interval

Delt = (Coord(3, NoNodes%) - Coord(3, (NoNodes% - I))) / 2

CASE ELSE ' interior Delta-S interval

Delt = (Coord(3, (K + i)) - Coord(3, (K - i))) / 2

END SELECT

' Got to skip over the number of the node in Func()

Sum = Sum + Coord(2, K) * Func(J + i, K) * WH(I, K) * Delt

NEXT K

Result(I, J) = Sum
NEXT J

NEXT I

END SUB



' ******************************* DERIV ****************************
This subroutine computesthe derivative of FuncDat() and stores it in
FuncDeriv(). Coord(3,I) is the "S" coordinate along the surface.
The derivatives are complicated becausethe spacingof the "S" points
is not uniform. A quadratic is fitted through eachthree points and
the derivative of the middle point is evaluated. Special formulas
are used for the first and last points. WhenCode%=2,the derivative

' is the averageof the linear (backwards)derivative and the quadratic derivative

SUBDeriv (Code%,Coord(), FuncDat(), FuncDeriv())
SHAREDNoModes%,NoNodes%
IF Code%= 1 THEN

AvgFactl = 0:
ELSE

AvgFactl = .5:
equally
ENDIF
FORI = 1 TONoModes%

FORJ = 1 TONoNodes%
SELECTCASEJ

AvgFact2 = 1

AvgFact2 = .5

' Discard the linear average

' Weight the linear and quad derivs.

' First• compute the backward and forward
' differences of S

CASE 1

DF = Coord(3, 2) - Coord(3, I)

DR = Coord(3, 2)
CASE NoNodes%

DF = Coord(3, NoNodes%) - Coord(3, (NoNodes% - I))

DR = Coord(3, (NoNodes% - I)) - Coord(3, (NoNodes% - 2))
CASE ELSE

DF = Coord(3, (J + I)) - Coord(3, J)

DR = Coord(3, J) - Coord(3, (J - i))
END SELECT

SELECT CASE J ' Now compute the values of the function at the rear,

' middle, and forward point, and the appropriate
' differences

CASE 1

FR = -FuncDat (I, 2)

FF = FuncDat(I, 2) : FM = FuncDat(I, i)

First = (FM - FR) / DR

Second = FM * (DF - DR) / (DF * DR)

Third = (FF * DR / DF - FR * DF / DR) / (DF + DR)

FuncDeriv(I, I) = First * AvgFactl + (Second + Third) * AvgFact2
CASE NoNodes%

FF = FuncDat(I, NoNodes%)

FM = FuncDat(I, (NoNodes% - i))

FR = FuncDat(I, (NoNodes% - 2))
First = (FF - FM) / DF

Second = FM * (DF + DR) / (DF * DR)

Third = (FF * (2 + DR / DF) + FR * DF / DR) / (DF + DR)

FuncDeriv(I, NoNodes%) = First / 2 + (Third - Second) / 2
CASE ELSE

FF = FuncDat(I, (J + i))

FM = FuncDat(I, J)

FR = FuncDat(I, (J - i))

First = (FM - FR) / DR

Second = FM * (DF - DR) / (DF * DR)

Third = (FF * DR / DF - FR * DF / DR) / (DF + DR)

FuncDeriv(I, J) = First * AvgFactl + (Second + Third) * AvgFact2
END SELECT

NEXT J

NEXT I

END SUB



' *************************** INPUT SCREEN *****************************

• Sets up the terminal screen for input. This uses a QUICKPAK routine

' TextInl() that allows the arrows to be used to input data anywhere and

to back up through the data to correct any bad entries. If QUICKPAK

is not available, the data can be entered (after modifying the code)

but it will be more difficult to correct a bad entry without starting

over from scratch for each set of input data.

Meaning of the parameters:

File%: 0 = data will be typed in from the terminal

i = data will be read in from the data disk files

Code%: 1 = input surface node # and R and S

2 = input surface R' and Z'

3 = input surface R" and Z"

4 = input surface potential values for each mode

, 5 = input wall node # and R and Z

, 6 = input wall potential values for each mode

TempS(): used to transfer data to Txt$ for display on the

screen, and to store input data temporarily after

it has been entered

TempNo(): used to accumulate the input data and return the

data to the main program for storage in the right

array

FileCode%: 1 = "open" disk files for data input

2 = "append" data to disk files

SUB InputScreen (File%, Code%, TempS(), TempNo())

SHARED NoModes%, ModeNo%, NoNodes%

CLS : COLOR ii, 0: FileCode% = 0

, SECTION i SECTION 1 SECTION 1

' This section puts the right titles and instructions on the screen.

SELECT CASE Code%

CASE 1 TO 4

LOCATE I, 20: PRINT "DATA FOR "

LOCATE I, 29: COLOR 15, 0: PRINT "FREE SURFACE "

LOCATE i, 42: COLOR ii, 0: PRINT "NODES"

CASE 5 TO 6

LOCATE I, 20: PRINT "DATA FOR "

LOCATE I, 29: COLOR 15, 0: PRINT "TANK WALL "

LOCATE I, 39: COLOR Ii, 0: PRINT "NODES"

END SELECT

LOCATE 2, 10

SELECT CASE Code%

CASE 1

PRINT "Enter: Node #, and R, S coordinates of node, starting at R=0."

CASE 2

PRINT "Enter: dR/dS and dZ/dS derivatives for each node."

CASE 3

PRINT "Enter: d2R/dS2 AND d2Z/dS2 derivatives of each mode."

CASE 4

PRINT "Enter: Potential values for mode number "

LOCATE 2, 49: COLOR 14, 0: PRINT ModeNo%

CASE 5

PRINT "Enter: Node #, and R, Z coordinates of node, starting at R=0"

CASE 6

PRINT "Enter: Potential values for mode number "

LOCATE 2, 49: COLOR 14, 0: PRINT ModeNo%

END SELECT



IF File% = 0 THEN

COLOR 15, 0

LOCATE 4, 8:

COLOR 14, 0: LOCATE 4, 16:

COLOR 15, 0: LOCATE 4, 22:

COLOR 14, 0: LOCATE 4, 25:

COLOR 15, 0: LOCATE 4, 37:

LOCATE 5, 8:

LOCATE 5, 16: COLOR 14, 0:

COLOR 15, 0: LOCATE 5, 25:
data."

ELSE

COLOR 15, 0

LOCATE 4, 8:

COLOR 14, 0: LOCATE 4, 16:

COLOR 15, 0: LOCATE 4, 22:

COLOR 14, 0: LOCATE 4, 25:

COLOR 15, 0: LOCATE 4, 37:

LOCATE 5, 8:

LOCATE 5, 16: COLOR 14, 0:

COLOR 15, 0: LOCATE 5, 25:

END IF

SELECT CASE Code%

instructions for typing input data

PRINT "Use the "

PRINT "ENTER "

PRINT "or "

PRINT "DOWN ARROW "

PRINT "key after entering each value."
PRINT "Use the "

PRINT "UP ARROW "

PRINT "key to move back through the input

' instructions for reading input from files

PRINT "Use the "

PRINT "ENTER "

PRINT "or "

PRINT "DOWN ARROW "

PRINT "key to enter each value from the file."
PRINT "Use the "

PRINT "UP ARROW "

PRINT "key to move back up through the data."

CASE 1 ' Print titles over input columns for R,S input data
LOCATE 7, 5: PRINT " Node # R S

R S"

CASE 2 ' Print titles over input columns for R', Z' input data
LOCATE 7, 5: PRINT " Node # R' (S) Z' (S)

R' (S) Z' (S)"
CASE 3 ' Print titles over input columns for R", Z" input data

LOCATE 7, 5: PRINT " Node # R'' (S) Z '' (S)

R''(S) Z''(S)"

CASE 4 ' Print titles over input columns for nodal values input
LOCATE 7, 5: PRINT " Node # Potential

Potential"

CASE 5

LOCATE 7, 5: PRINT " Node # R Z
R Z"

CASE 6 ' Print titles over input columns for nodal values input
LOCATE 7, 5: PRINT " Node # Potential

Potential"

END SELECT

' END OF SECTION 1 END OF SECTION 1

• SECTION 2 SECTION 2 SECTION 2

' This section gets the screen display in shape to continue with data
' input.

' Print out the numbers from 1 to NoNodes% on the screen in two

' columns, 1 to 12 and 13 to NoNodes%, to help organize the input.
FOR N = 1 TO NoNodes%

IF N <= 12 THEN

LOCATE 7 + N, 3: PRINT N

ELSE

LOCATE 7 + N - 12, 42: PRINT N
END IF

NEXT N

Node #

Node #

Node #

Node #

Node #

Node #



' When entering the modal values• the surface or wall node numbers are

' also displayed in the columns, but we have to retrieve them from Temps

' and store them in TempNo() so they can be displayed. The node numbers

' are already available when entering the coordinate data.

IF Code% = 4 OR Code% = 6 THEN

FOR M _ 1 TO NoNodes%

TempNo(l, M) = VAL(Temp$(I, M))

NEXT M

END IF

• Now, for the wall input• change Code% so that the same routines can

' be used as for the surface nodes; also change FileCode% so that data is

' appended to the existing disk files rather than overwriting them.

IF Code% = 5 THEN Code% = i: FileCode% _ 1

IF Code% m 6 THEN Code% = 4: FileCode% _ 1

' Now print the node numbers on the screen:

SELECT CASE Code%

CASE 2 TO 4

FOR N m 1 TO NoNodes%

IF N <= 12 THEN

LOCATE 7 + N, i0: PRINT TempNo(l, N)

ELSE

LOCATE 7 + N - 12, 50: PRINT TempNo(l, N)

END IF

NEXT N

END SELECT

' END OF SECTION 2 END OF SECTION 2

' SECTION 3 SECTION 3 SECTION 3

' This long segment gets the screen input and checks to see if it is

' okay. Most of the code just allows the cursor to move up and down

' on the screen to correct any bad entry, without having to enter all

' the data over again. The parameter ExC% indicates whether the piece

' of input is okay (ExC%=0) so the cursor can be moved to the next line,

' or that the piece of data is wrong (ExC%<>0) and will be re-entered.

' ExC% is set by how the user ends the entry (RETURN, etc., or UP ARROW, etc)

• First, decide what column to put the cursor into initially.

N = I: NN = N

IF Code% z 1 THEN M1 = 10 ' Put cursor in "Node No" col

IF Code% = 2 OR Code% = 3 THEN M1 = 20 ' Put cursor in 2nd col

IF Code% = 4 THEN M1 = 30 ' Put cursor in 3rd col

' When typing in the modal values, we need to clear out the coordinate data

' from TempS() so that it is not displayed on the screen incorrectly.

IF Code% = 4 AND File% = 0 THEN

FOR I = 1 TO NoNodes%

Temp$(ModeNo% + i, I) ....

NEXT I

END IF

Insurf: ' we keep coming back here for the next piece of data

COLOR 7, 0

SELECT CASE M1

' Txt$ is the data that will be displayed on the screen initially

CASE I0, 50

Txt$ = TempS(l, N)

CASE 20, 60

Txt$ = TempS(2 * Code%, N)

CASE 30, 70

IF Code% <> 4 THEN

Txt$ = Temp$(l + 2 * Code%, N)

ELSE

' node numbers

' R, R' or R" (surface) or R (wall)

S, Z' or Z" (surface) or Z (wall)



Txt$ -- Temp$(ModeNo% + I, N) ' modal potential values at nodes
END IF

END SELECT

LOCATE 7 + NN, M1

' Now get the piece of data; it is returned in Txt$

CALL TextInl(Txt$, 8, 0, 0, ExC%, 7)

IF ExC% -- 0 THEN

' data is okay, so store it, move the cursor, and get the next data piece
SELECT CASE M1

CASE i0, 50

TempS(l, N) -- Txt$

TempNo(l, N) = VAL(Txt$) ' change the text input to a number
M1 = M1 + 10

GOTO Insurf

CASE 20, 60

TempS(2 * Code%, N) = TxtS

TempNo(2 * Code%, N) -- VAL(Txt$)
M1 = M1 + i0

GOTO Insurf

CASE 30

IF Code% <> 4 THEN

Temp$(l + 2 * Code%, N) -- Txt$

TempNo(l + 2 * Code%, N) -- VAL(Txt$)
ELSE

Temp$(ModeNo% + I, N) -- Txt$

TempNo (ModeNo% + I, N) = VAL (Txt$)
END IF
IF N < 12 THEN

N -- N + i: NN I N

M1 -- I0

IF Code% = 2 OR Code% -- 3 THEN M1 = 20

IF Code% = 4 THEN M1 _ 30

ELSE

N = N + i: NN = N - 12

M1 -- 50

IF Code% -- 2 OR Code% = 3 THEN M1 = 60

IF Code% = 4 THEN M1 = 70

END IF

GOTO Insurf

CASE 70

IF Code% <> 4 THEN

Temp$(l + 2 * Code%, N) -- Txt$

TempNo(l + 2 * Code%, N) -- VAL(Txt$)
ELSE

Temp$(ModeNo% + I, N) = Txt$

TempNo(ModeNo% + i, N) = VAL(Txt$)
END IF

IF N < NoNodes% THEN

N -- N + i: NN = N - 12

M1 -- 50

IF Code% = 2 OR Code% = 3 THEN M1 = 60

IF Code% = 4 THEN M1 -- 70

GOTO Insurf

ELSE

LOCATE 23, 10: COLOR 15, 0

INPUT "Is all your data correct (Y,N)? ", ResponseS

Responses = UCASE$ (ResponseS)

IF ResponseS = "Y" THEN

GOTO Finish

ELSE ' start this screen all over again
N = NoNodes%

NN = NoNodes% - 12



M1 = 70

GOTO Insurf

END IF

END IF

END SELECT

ELSE

• piece of data is bad, so don't store it and back up the cursor. This

' is complicated because we have to jump to a new column when the cursor

• has backed all the way to the top of the previous one, and we also

' have to make sure that the cursor does not leave the data input area.
SELECT CASE M1

CASE 30, 70
IF Code% <> 4 THEN

M1 = M1 - i0

GOTO Insurf

ELSE

IF M1 = 70 THEN

IF N = 13 THEN

M1 = 30

N = N - 1

NN = N

GOTO Insurf

ELSE

M1 = 70

N=N-I

NN = N - 12

GOTO Insurf

END IF

ELSE

N = N - 1

IF N < 1 THEN

CALL Chime(8)

N = 1

NN = N

GOTO Insurf

ELSE

NN z N

GOTO Insurf

END IF

END IF

END IF

CASE 20

IF Code% = 1 THEN

M1 = M1 - i0

GOTO Insurf

ELSE
N=N-I

IF N < 1 THEN

CALL Chime(8)

N = 1

M1 = 20

GOTO Insurf

ELSE

M1 = 30

NN = N

GOTO Insurf

END IF

END IF

CASE 60

IF Code% = 1 THEN

M1 = M1 - i0

GOTO Insurf

' put cursor on last item of data



ELSE
IF N = 13 THEN

M1= 30
N = N - 1
NN = N

GOTO Insurf

ELSE

M1 = 70

N = N - 1

NN z N - 12

GOTO Insurf

END IF

END IF
CASE i0

N = N - 1

IF N < i THEN

CALL Chime(8)

N = 1

M1 = I0

GOTO Insurf

ELSE

M1 = 30

NN = N

GOTO Insurf

END IF

CASE 50

IF N = 13 THEN

M1 = 30

N = N - 1

NN=N

GOTO Insurf

ELSE

M1 _ 70

N _ N - 1

NN z N - 12

GOTO Insurf

END IF

END SELECT

END IF

' END OF SECTION 3 END OF SECTION 3

' SECTION 4 SECTION 4 SECTION 4

' This section writes the good data to the disk data files.

Finish:

' Write the surface coordinate data after all three screens of data
' have been entered:

IF Code% = 3 THEN

OPEN "COORD.DAT" FOR OUTPUT AS #I

FOR I = 1 TO 7

FOR J = 1 TO NoNodes%

WRITE #i, TempNo(I, J)

NEXT J
NEXT I

CLOSE #I

END IF

' Append the wall coordinate data after it has been completely entered:
IF Code% = 1 AND FileCode% = 1 THEN

OPEN "COORD.DAT" FOR APPEND AS #I

FOR I = 1 TO 3

FOR J = 1 TO NoNodes%

WRITE #i, TempNo(I, J)
NEXT J

' This wipes out all existing data



NEXTI

CLOSE #I

END IF

' Write the nodal data after all the modes have been entered:

IF Code% = 4 AND ModeNo% = NoModes% THEN

' check to see if the data is for the surface nodes:

IF FileCode% = 0 THEN

OPEN "MODE.DAT" FOR OUTPUT AS #i

FOR I = 1 TO NoModes%

FOR J = 1 TO NoNodes%

WRITE #I, TempNo(I + i, J)

NEXT J

NEXT I

CLOSE #i

END IF

' check to see if the data is for the wall nodes:

IF FileCode% = 1 THEN

OPEN "MODE.DAT" FOR APPEND AS #I

FOR I = 1 TO NoModes%

FOR J = 1 TO NoNodes%

WRITE #i, TempNo(I + i, J)
NEXT J

NEXT I

CLOSE #I

END IF

END IF

' This wipes out existing data

' Skip the node #'s

' Skip the node #'s

END SUB



' ******************************* LIQVOL ****************************

' This subroutine computes the non-dimensional volume occupied by the

' liquid and the non-dimensional location of the center of mass.

• The volume = pi * RT^3 * K, where RT is the non-dimensional

' radius to the tank wall from the origin of the coordinate system.

' RT must be equal to ONE if the input is given correctly. This routine

' computes K, assuming that RT=I. The dimensional volume is the non-

' non-dimensional volume multiplied by the radius RO to the tank wall;

' or Volume = pi * RO^3*K. The center of mass is referenced to the

' bottom of the tank.

r

SUB LiqVol (Surf(), Wall(), Ansl, Ans2, DZ, DeltaElev, SurfElev)

SHARED NoNodes%

DIM ZSurf(25)

' We first have to compute the Z coordinates of the free surface nodes

' since they were not asked for in the input. The Z's are computed

' by integrating the values of Z'

ZSurf(1) = 0

FOR I = 2 TO NoNodes%

AvgSlope = (Surf(5, (I- i)) + Surf(5, I)) / 2

DeltaZ = AvgSlope * (Surf (3, I) - Surf (3, (I - I)))

ZSurf(I) = ZSurf(I - i) + DeltaZ

NEXT I

DZ = ZSurf(NoNodes%) - ZSurf((NoNodes% - i))

' Estimate the elevation of the free surface center from the tank bottom

' First• compute distance tank bottom is below Z = 0:

DeltaElev = -Wall(3, I)

' Then, the free surface elevation is:

ZSurf(1) = DeltaElev + (Wall(3, NoNodes%) - ZSurf(25))

' Save ZSurf(1)

SurfElev = ZSurf(1)

' Correct the other free surface elevations:

FOR I = 2 TO NoNodes%

ZSurf(I) = ZSurf(I) + ZSurf(1)

NEXT I

' Now can do the numerical integration. Differential volume =

' (Rad to wall)^2 * DeltaZ of wall -

' (Rad to liq surface)^2 * DeltaZ of surface

Ansl - 0: Ans2 - 0

_tnslTemp = 0: Ans2Temp = 0

Ans3Temp = 0: Ans4Temp = 0

FOR I = 1 TO NoNodes%

' First set up the right DeltaZ's

SELECT CASE I

CASE 1 ' first Delta-Z interval

DZSurf = (ZSurf(2) - ZSurf(1)) / 2

DZWall = (Wall(3, 2) - Wall(3, I)) / 2

CASE NoNodes% ' last Delta-Z interval

DZSurf = (ZSurf(NoNodes%) - ZSurf(NoNodes% - I)) / 2

DZWall = (Wall(3, NoNodes%) - Wall(3, (NoNodes% - i))) / 2

CASE ELSE ' interior Delta-Z interval

DZSurf - (ZSurf(I + i) - ZSurf(I - i)) / 2

DZWall = (Wall (3, (I + i)) - Wall (3, (I - I))) / 2

END SELECT



DeltaVoll _ (Wall(2, I) ^ 2) * DZWall

DeltaVol2 = (Surf(2, I)) ^ 2 * DZSurf

AnslTemp = AnslTemp + DeltaVoll

Ans2Temp = Ans2Temp + DeltaVol2

Ans3Temp = Ans3Temp + (Wall(3, I) + DeltaElev) * DeltaVoll

Ans4Temp = Ans4Temp + ZSurf(I) * DeltaVol2

NEXT I

Ansl= AnslTemp - Ans2Temp ' liquid volume

Ans2 = (Ans3Temp - Ans4Temp) / Ansl ' liquid c.g.

END SUB



PRINT "B(1) =":

LOCATE 8, 29

PRINT "B(2) =":

LOCATE 8, 54
PRINT "B(3) =":

COLOR Ii

LOCATE i0, 15:
COLOR 15

LOCATE ii, 2:

LOCATE ii, 27:

LOCATE II, 49:

LOCATE ii, 68:

' ************************** OUTPUTSCREEN **************************

' This subroutine displays the input data and the computed results on

' the screen. It also asks if the user wants printed copies.
t

SUB OutputScreen (F2, SM2, PL, HO, CG, SC, BI(), PCode%)

SHARED FillLevel, BondNo, Ang, ConstMass, ExpMass, NoModes%, NoNodes%

SHARED LiqVolume

Pi = 4 * ATN(1)

CLS

' Display the input

COLOR ii: LOCATE I, 35: PRINT "INPUT DATA"

COLOR 15: LOCATE 2, 5: PRINT "Bond Number Fill Level % Cont. Ang"
LOCATE 2, 44: PRINT "Surface Mass Distribution Function"

CALL Box(3, 7, 5, 13, I, 14, -I) ' draw some boxes for the output
CALL Box(3, 20, 5, 27, I, 14, -I)

CALL Box(3, 33, 5, 40, I, 14, -I)

CALL BOX(3, 48, 5, 74, i, 14, -i)

LOCATE 4, 8: PRINT USING "##.#"; BondNo

LOCATE 4, 22: PRINT USING "##.#"; FillLevel

LOCATE 4, 35: PRINT USING "##.#"; Ang
LOCATE 4, 50: PRINT USING "##.###"; ConstMass

LOCATE 4, 56: PRINT USING " - (S/Smax)^#.##"; ExpMass

' end of input display

' display the computed results

COLOR Ii: LOCATE 6, 22: PRINT "PARTICIPATION FACTORS OF TRIAL MODES"
FOR I = 1 TO 3

Edgel% = I0 + 25 * (I - I)

Edge2% = Edgel% + i0

CALL Box(7, (Edgel%), 9, (Edge2%), I, 14, -i)
NEXT I

COLOR 15: LOCATE 8, 4

LOCATE 8, 12: PRINT "1.00000"

' format and print output

LOCATE 8, 37: PRINT USING "#.#####"; BI(2)

LOCATE 8, 62: PRINT USING "#.#####"; BI(3)

PRINT "NON-DIMENSIONAL PARAMETERS OF THE PENDULUM MODEL"

PRINT "(Liq VOI)/("; CHR$(227) ; "* Ro^3)"

PRINT "Slosh M/Liquid M"
PRINT "Pend. L/Ro"

PRINT "Ho/Ro"

CALL Box(12, 5, 14, 15, i, 14, -i)

LOCATE 13, 7: PRINT USING "##.####"; LiqVolume

CALL Box(12, 29, 14, 39, i, 14, -I)

LOCATE 13, 31: PRINT USING "#.####"; SM2

CALL Box(12, 48, 14, 59, i, 14, -i)

LOCATE 13, 50: PRINT USING "##.####"; PL

CALL Box(12, 66, 14, 75, i, 14, -i)
LOCATE 13, 67: PRINT USING "###.###"; HO

LOCATE 15, 5: PRINT "CG Loc./Ro"

LOCATE 15, 28: PRINT "Spring/("; CHR$(229); " * Ro^2) "

LOCATE 15, 50: PRINT "Freq^2/("; "(I+Bo)"; CHR$(229); "/(d * Ro^3)) "
CALL Box(16, 5, 18, 16, i, 14, -I)

CALL Box(16, 26, 18, 45, I, 14, -I)

CALL Box(16, 58, 18, 71, I, 14, -I)



LOCATE 17, 7: PRINT USING "##.####"; CG

LOCATE 17, 32: PRINT USING "##.####"; SC

LOCATE 17, 62: PRINT USING "##.####"; F2

, end of results display

LOCATE 21, 5

PRINT "Do you want the above data printed out (Y or N) ?"
LOCATE 21, 55, i, 5, 7: INPUT "", Responses

ResponseS I UCASE$(Response$)

IF Responses - "N" THEN
PCode% - 0: EXIT SUB

ELSE

PCode% = 1

END IF

LOCATE 23, 5

PRINT "Do you also want the surface wave data printed (Y or N) ?"
LOCATE 23, 63: INPUT "", Responses

Responses = UCASE$(Response$)

IF Responses = "N" THEN PCode% = 1 ELSE PCode% = 2

END SUB



' ***************************** PADZER0 *****************************

• This subroutine turns a number into a text string for printing. The string

' can be specified to have a given number of decimal places "NoDecs" and

' a given number of digits before the decimal "NoBeforeDec" If the

• number is a floating point number with a negative exponent and the

• value of the exponent is greater than the NoDecs, then the string

' is set equal to zero; otherwise the number is turned into a string that

' looks like a decimal number. At this time, nothing is done to

' floating point numbers with positive exponents; the string is just the

' number.

FUNCTION PadZero$ (A, NoDecs, NoBeforeDec)

A$ = STR$ (A)

A$ = LTRIM$(RTRIM$(A$)) ' Get rid of all blank spaces

C$ = MID$(A$, I, i)

' In case the number is negative• keep the same number of digits before

' the decimal point.

IF C$ = "-" THEN NoBeforeDec = NoBeforeDec + 1

' find if it is a floating point number

FOR I = 2 TO LEN(A$) ' skip any possible ..... signs for negative #'s

B$ = MID$(A$, I, I)

IF B$ = "-" THEN Flag = i: NF = I + 1 ' negative exponent

IF B$ = "+" THEN Flag = 2: NF = I + 1 ' positive exponent

NEXT I

SELECT CASE Flag

CASE 1 ' The number has a negative exponent

Numl = VAL (MID$ (A$, NF, I)) : Num2 = VAL (MID$ (A$, (NF + i), I))

IF Numl > 0 OR Num2 > NoDecs THEN ' the number is too small

A$ = "0." ' make it equal to 0.000 ....

FOR I = 1 TO NoDecs

AS = AS + "0"
NEXT I

ELSE

IF C$ -- "-" THEN

B$ = MID$(A$, 2, i)

FOR I -- 4 TO (LEN(A$) - 4)

B$ = B$ + MID$(AS, I, I)

NEXT I

FOR I = 1 TO (Num2 - i)

B$ = "0" + B$
NEXT I

A$ -- C$ + "0." + B$

ELSE

B$ = MID$(A$, i, i)

FOR I = 3 TO (LEN(A$) - 4)

B$ R B$ + MID$(AS, I, I)

NEXT I

FOR I = 1 TO (Num2 - i)

S$ = "0" + B$
NEXT I

A$ -- "0." + B$

END IF

END IF

turn the number into a decimal number

' get the first digit

' skip - sign, Ist digit, and

' the decimal point, and don't

' count the "E-XX" at end

' get the first digt

' skip ist digit and decimal point

' and don't count the "E-XX"

CASE ELSE

END SELECT

' if it is a negative number, make it start with "-0."

IF C$ ...... AND MID$(AS, 2, i) ..... THEN

B$ .....
FOR I = 3 TO LEN(A$)

B$ -- B$ + MID$(AS, I, I)

The number has no exponent or a postive exponent



NEXT I

A$ -- "-0." + B$

END IF

' Find out where the decimal point is
DecLoc = 0

FOR I = 1 TO LEN(A$)

B$ = MID$(A$, I, i)

IF B$ m - " THEN DecLoc m I

NEXT I

' if the first character is " " then add a zero before it

IF DecLoc = 1 THEN A$ = "0" + AS: DecLoc -- 2

IF C$ ..... AND MID$(AS, 2, i) _ " " THEN

B$ = ""
FOR I -- 3 TO LEN(A$)

B$ = B$ + MID$(AS, I, i)
NEXT I

A$ = "-0." + B$

END IF

' if there is no .... then add one at the end

IF DecLoc = 0 AND NoDecs > 0 THEN A$ = A$ + " ": DecLoc = LEN(A$)

' if the number has too many decimal places, then cut the extra ones

IF ((LEN(A$) - DecLoc) >= NoDecs) THEN

B$ ....
FOR I = 1 TO (DecLoc + NoDecs)

B$ = B$ + MID$(AS, I, i)
NEXT I

AS = B$

END IF

' if there are not enough "0" at the end, add enough of them, but

' first, find out how many "0" to add

NoPad = NoDecs - (LEN(A$) - DecLoc)

' now add the "0"s

FOR I = 1 TO NoPad

A$ = AS + "0"
NEXT I

' now see if there are enough spaces before the decimal point

IF NoBeforeDec > (DecLoc - i) THEN ' if not, add blank spaces
NoPad = NoBeforeDec - (DecLoc - I)

FOR I -- 1 TO NoPad

AS ..... + AS

NEXT I

END IF

' All done, so send the string back

PadZero$ = AS

END FUNCTION



' *************************** PARAMMODEL ************************

' This subroutine computes the non-dimensional parameters of the

' pendulum model: SM2 = Slosh Mass / Liquid Mass in tank;

• PL = Pendulum Length / RO

' SC = Spring Constant / (surface tension * R0^3)

' HO = HingePointLocation / RO

' Note: F2 = SlsFreq (i.e, non-dimensional natural frequency ^ 2)

' SM = SloshMass / LiquidMass in Full Tank

' MOF = Moment / Force (non-dimensional)
F

SUB ParamModel (MOF, F2, SM, SM2, PL, SC, HO)

SHARED LiqVolume, FillLevel, DeltaElev, SurfElev

SHARED BondNo

Pi = 4 * ATN(1)

' Compute the slosh mass ratio to the actual liquid mass

SM2 = SM / (FillLevel / I00)

' Compute the pendulum length ratio to tank radius

PL = 1 / F2

' Compute the spring constant ratio to (surface tension * RO ^2)

SC = SM2 * Pi * LiqVolume / F2

' Compute the hinge point location ratio to tank radius

HO = MOF + SC / ((i + BondNo) * (SM2 * Pi * LiqVolume) * PL * F2)

HO = HO + SurfElev ' reference to tank bottom

END SUB



F
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SUB PotNorm (SurfP(), WalIP())

SHARED NoModes%, NoNodes%

FOR I = 2 TO (NoModes% + i)

PotMax = ABS(SurfP(I, i))

FOR J = 2 TO NoNodes%

************************* POTNORM *******************************

This subroutines finds the largest value of the trial potentials for
each mode and uses it to normalize all the nodal values for that mode.

' Skip over the node ID number

• First guess for maximum value

IF ABS(SurfP(I, J)) > PotMax THEN PotMax = ABS(SurfP(I, J))

NEXT J

FOR J = 1 TO NoNodes%

SurfP(I, J) = SurfP(I, J) / PotMax ' This is the normalization

WallP(I, J) --WalIP(I, J) / PotMax
NEXT J

NEXT I

END SUB



, ***************************** PRINTOUT****************************
' This printout routine prints out the input data, the trial results,

' and the mechanical model paramters. It uses the function "PadZero$"

' to make strings with a specified number of decimal places and leading

, digits out of the numerical data for easier control of the printing.

SUB PrintOut (F2, F(), SM2, PL, HO, CG, SC, BI(), PC%)

SHARED FillLevel, BondNo, Ang, ConstMass, ExpMass, NoModes%, NoNodes%

SHARED LiqVo lume

DIM F$ (3)

CLS

, ................. Display the input ....................

LPRINT SPC (27) ; ....... INPUT DATA .......

A$ = "Bond Number Fill Level(%) Cont. Ang"
B$ - "Surface Mass Distribution Function"

LPRINT SPC(4) ; AS; SPC(4) ; B$

B$ = PadZero$(BondNo, I, 2) ' 1 decimal place, two spaces or digits

F$ = PadZero$(FillLevel, i, 2) ' (cont'd) before the decimal place

AS = PadZero$(Ang, i, 2)

C$ = PadZero$(ConstMass, 3, 2)

E$ = PadZero$(ExpMass, i, 2)

LPRINT SPC(7); B$; SPC(10); F$; SPC(9); AS; SPC(12); C$; " - (S/Smax)^"; E$

LPRINT

LPRINT SPC(20) ;
LPRINT "Trial Freq i"; SPC(4); "Trial Freq 2"; SPC(4); "TrialFreq 3"

FOR I = 1 TO 3

F$(I) = PadZero$((F(I)), 5, 2)

NEXT I

LPRINT SPC(13) ;

FOR I -- 1 TO 3

LPRINT SPC(8) ; F$(I) ;

NEXT I

, .............. end of input display .....................

, ........................ display the results ==

LPRINT : LPRINT SPC(27); "= ...... RESULTS ....... "

LPRINT SPC(15); "***** PARTICIPATION FACTORS OF TRIAL MODES *****"

FOR I = 1 TO 3

F$(I) -- PadZero$((BI(I)), 5, 2)

NEXT I

LPRINT SPC(10) ;

FOR I _ I TO 3

I$ = LTRIM$ (RTRIM$ (STR$ (I)) )
LPRINT SPC(4) ; "B("; IS; ") = "; F$(I) ;

NEXT I

LPRINT : LPRINT

LPRINT SPC(10) ;
LPKINT "***** NON-DIMENSIONAL PARAMETERS OF THE PENDULUM MODEL *****"

L$ = PadZero$(LiqVolume, 4, 2)

S$ = PadZero$(SM2, 4, i)

p$ = PadZero$(PL, 4, 2)

H$ = PadZero$(HO, 3, 3)

LPRINT SPC(10) ;
LPRINT "Liq Vol/"; CHR$(227) ; "Ro^3"; SPC(3) ;

LPRINT "Slosh Mass/Liq Mass"; SPC(3) ;

LPRINT "Pend. L/Ro"; SPC(7);

LPRINT "Ho/Ro"

LPRINT SPC(12); L$; SPC(13); S$; SPC(II); P$; SPC(6); H$



C$ = PadZero$(CG, 4, 2)

S$- PadZero$(SC, 4, 2)

F$ = PadZero$(F2, 4, 2)
LPRINT : LPRINT SPC(10);

LPRINT "Liq. CG/Ro"; SPC(8);

LPRINT "Spring/"; CHR$(229) ; "Ro^2)"; SPC(8) ;

LPRINT "Freq^2/["; "(I+Bo)'; CHR$(229) ; "/(dRo^3) ]"
LPRINT SPC(II); C$, SPC(2); S$; SPC(20); F$

, end of results display
IF PC% -- 1 THEN LPRINT CHR$(12) ELSE LPRINT : LPRINT

END SUB



' ******************************* PRINTOUT2
' This subroutine prints out the waveheight data

SUBPrintOut2 (S(), WH(), BI(), F2, F())
SHAREDNoNodes%,NoModes%,BondNo
DIM W(4), W$(4)
LPRINTSPC(22); "I******* WAVEHEIGHTSONSURFACE*******J"
LPRINTSPC(23); "ADINA"; SPC(7); "ADINA"; SPC(7); "ADINA";
LPRINTSPC(7); "Slosh"
LPRINTSPC(10); "S Coord."; SPC(4); "Trial i"; SPC(5); "Trial 2";
LPRINTSPC(5); "Trial 3"; SPC(6); "Mode I"
LPRINTSPC(9); ........... ; SPC(5); ........... ; SPC(5); ........... ;
LPRINTSPC(5); .......... ; SPC(5); ...........
FORI -- 1 TONoNodes%

LPRINTSPC(II) ;
S$ = PadZero$(S(3, I), 4, I)
W(1) = WH(I, I)
w(2) = 0
w(3) = 0
SELECT CASE NoModes%

CASE 2

W(2) = WH(2, I)
CASE 3

W(2) -- WH(2, I)

W(3) = WH(3, I)

CASE ELSE

END SELECT

W(4) = 0

FOR J = 1 TO 3

W(4) = W(4) + BI(J) * F(J) * W(J)

W(J) = W(J) * SQR(F(J)) * (I + BondNo)
NEXT J

W(4) = W(4) * (I + BondNo) / SQR(F2)
FOR J -- 1 TO 4

W$(J) = PadZero$(W(J), 4, 2)
NEXT J

W = 5

X = 5

Y= 5

Z = 5

B$ = LTRIM$(W$(1)) : IF MID$(B$, i, i) ...... THEN X -- 4

B$ = LTRIM$(W$(2)) : IF MID$(B$, i, i) ...... THEN X -- 4

B$ -- LTRIM$(W$(3)) : IF MID$(B$, i, i) ...... THEN Z = 4

B$ = LTRIM$(W$(4)) : IF MID$(B$, I, i) ...... THEN W = 4

LPRINT S$; SPC(X); W$(1); SPC(Y); W$(2); SPC(Z); W$(3); SPC(W); W$(4)
NEXT I

LPRINT CHR$(12) ' feed paper out

END SUB

************************



r

' and R2 are the mean radii of curvature of the free surface.

' Z(S)"R(S)'-Z(S)'R(S)" and R2 = Z(S)'/R.
w

SUB Rad (Coord(), Temp())

SHARED NoNodes%

FOR I - 1 TO NoNodes%

RII - Coord(7, I) * Coord(4, I)

RI2 -- Coord(5, I) * Coord(6, I)

' When computing R2 must allow for fact that R=0 at the first node

IF I = 1 THEN R2 = Coord(7, I) ELSE R2 = Coord(5, I) / Coord(2, I)

Temp(I) -- (RII - RI2) ^ 2 + R2 ^ 2

NEXT I

******************************* RAD *****************************

This subroutine computes the expression (I/R1^2 + I/R2^2) where R1
R1 =

END SUB



' ******************************* ROOT *****************************
' This subroutine finds the (non-dimensionalfreq.)^2 for of the first mode.
SUBRoot (Guess, DT, CI(), C2(), Answer)
SHAREDNoModes%
DIM CS(3, 3)
SELECTCASENoModes%

CASE1 ' Only one term; solve it directly
Answer = CI(I, i) / C2(I, i)

IF Answer < 0 THEN PRINT "Eigenvalue is negative! ": END

CASE 2 ' Two terms; use quadratic formula

RQuad = C2(I, i) * C2(2, 2) -C2(I, 2) * C2(2, I)

RMidl = CI(I, i) * C2(2, 2) + CI(2, 2) * C2(I, I)

RMid2 = CI(I, 2) * C2(2, I) + CI(2, i) * C2(I, 2)
RMid = RMidl - RMid2

RConst = CI(I, i) * CI(2, 2) - CI(I, 2) * CI(2, i)

RootTerm = RMid ^ 2 - 4 * RQuad * RConst

IF RootTerm < 0 THEN PRINT "Eigenvalue is complex! ": END
Answerl = (-RMid + SQR(RootTerm)) / (2 * RQuad)

Answer2 = (-RMid- SQR(RootTerm)) / (2 * RQuad)

IF Answerl < 0 AND Answer2 < 0 THEN PRINT "Eigenvalue is < 0": END
IF Answerl < 0 THEN Answer = Answer2
IF Answer2 < 0 THEN Answer -- Answerl

IF Answerl > 0 AND Answer2 > 0 THEN

IF Answerl < Answer2 THEN Answer = Answerl ELSE Answer = Answer2
END IF

CASE 3 ' Three terms; expand the determinant and iterate
WHILE DT > .000001

FOR I = 1 TO 3 ' Calculate determinant for "Guess"

FOR J = 1 TO 3

CS(I, J) = CI(I, J) + Guess * C2(I, J)
NEXT J

NEXT I

Terml--CS(I, i) * (CS(2, 2) * CS(3, 3) -CS(3, 2) * CS(2, 3))

Term2 = CS(l, 2) * (CS(2, I) * CS(3, 3) - CS(3, I) * CS(2, 3))

Term3 = CS(I, 3) * (CS(2, I) * CS(3, 2) -CS(3, I) * CS(2, 2))
StartVal = Terml - Term2 + Term3 ' Determinant value

TestVal = StartVal

Test = StartVal * TestVal: K -- 1

WHILE Test > 0 ' When Test < 0 we have bracketed the root

Guess = Guess + DT

FOR I = 1 TO 3

FOR J -- 1 TO 3

CS(I, J) = CI(I, J) + Guess * C2(I, J)
NEXT J

NEXT I

Terml -- CS(I, i) * (CS(2, 2) * CS(3, 3) - CS(3, 2) * CS(2, 3))

Term2 = CS(I, 2) * (CS(2, i) * CS(3, 3) -CS(3, i) * CS(2, 3))

Term3 = CS(I, 3) * (CS(2, I) * CS(3, 2) - CS(3, i) * CS(2, 2))
TestVal = Terml - Term2 + Term3

Test -- StartVal * TestVal: K = K + 1

IF K > i00 THEN PRINT "No Convergence": END
WEND

Guess = Guess - DT ' back up one value to get new StartValue

DT = DT / i0 ' decrease the iteration jump
WEND

Answer = Guess

END SELECT

END SUB



• ****************************** SLOSHM****************************
' This subroutine computesthe non-dimensionalslosh massof the
' pendulummodeland makesit non-dimensionalby dividing by the liquid mass
' that will completely fill the tank = pi * RO^3*LiqVolume/(FillLevel/lO0).
' The subroutine also computesthe ratio of the momentto the force.
' The massis returned as Ansl, the ratio is returned as Ans2.

SUBSloshM (S(), W(), PS(), PW(), TF(), BI(), SlsFrq, Ansl, Ans2)
SHAREDNoNodes%,NoModes%,FillLevel, BondNo, LiqVolume
SHAREDAng, ConstMass, ExpMass, LastDZsurf, DeltaElev, SurfElev

S() = coordinate matrix for free surface
W() = coordinate matrix for wall
PS() = potential values at free surface nodes
PW()= potential values at wall nodes

TF() = matrix of trial (eignevalues)^2

BI() = matrix of "b" modal participation factors

' First, compute the nondimensional force and moment amplitudes

' The first component is the surface tension effect at the tank walls

' Sine of the wall angle X at the contact line:
NN% = NoNodes%: NNI% = NN% - 1

DeltaZ = W(3, NN%) - W(3, NNI%)

DeltaR = W(2, NN%) - W(2, NNI%)

SineX = DeltaZ / SQR(DeltaZ ^ 2 + DeltaR ^ 2)

' Curvature of free surface at the contact line:

WallCurvl = S(7, NN%) * S(4, NN%) - S(5, NN%) * S(6, NN%)

WallCurv2 = S(5, NN%) / S(2, NN%)

WallCurv = WallCurvl + WallCurv2

• Value of the normal derivative of the potential at the contact line:

WallMass = ConstMass - I: ' this is parameter "e"

PotDeriv = 0

FOR I = 1 TO NoModes%

PotDeriv - PotDeriv + PS((I + i), NN%) * TF(I) * BI(I)

NEXT I

PotDeriv = PotDeriv * WallMass * (I + BondNo)

' Value of wave amplitude at the contact line:

WaveAmp _ PotDeriv / SQR(SlsFrq)

' Average the finite element contact angle and the input contact angle:

RS = S(2, NN%) : RSI = S(2, (NN% - i))

Rw = W(2, NN%) : RWI = W(2, (NN% - I))

zw = w(3, NN%): ZWl = W(3, (NN% - I))
Terml = (RS- RSI) * (Rw- RWI) + (LastDZsurf) * (ZW- ZWI)

Term2 = SQR((RS - RSI) ^ 2 + (LastDZsurf) ^ 2)

Term3 = SQR((Rw - RWI) ^ 2 + (ZW - ZWI) ^ 2)

Cosine = Terml / (Term2 * Term3)

Sine = SQR(I - Cosine ^ 2)

Angl = ATN(Sine / Cosine)

AngleTrue = (Angl + Ang * 3.14159 / 180) / 2

Cosine = COS(AngleTrue)

Sine = SIN(AngleTrue)

' The surface tension force:

RC = S(2, NN%): ScriptRc = 1 / WallCurv

SurfForce m (Cosine - (Rc / ScriptRc) * SineX) * Cosine / Sine

SurfForce = SurfForce * WaveAmp
IF SurfForce > 0 THEN SurfForce = 0



' The surface tension moment:
FC _ (W(3, NoNodes%)- W(3, I)) - SurfElev
FirstPart = Cosine - ((Rc / ScriptRc) + (RC / FC) * Sine) * SineX
FirstPart = FirstPart * Cosine / Sine

SurfMoment = FirstPart * Fc * WaveAmp

' Pressure component of force and moment:

PresForce = 0: PresMoment = 0
FOR I = 1 TO NoNodes%

SELECT CASE I ' get the right DeltaZ
CASE 1

DZ = (W(3, 2) -W(3, i)) / 2
CASE NoNodes%

DZ = (W(3, NN%) - W(3, (NN% - i))) / 2
CASE ELSE

DZ = (W(3, (I + i)) - W(3, (I - I))) / 2
END SELECT

FOR J = 1 TO NoModes%

Rw = W(2, I)

Z = DeltaElev + W(3, I) - SurfElev ' referred to free surface

TrialPotential = PW((J + i), I) * BI(J)

PresForce = PresForce + TrialPotential * Rw * DZ

PresMoment = PresMoment + TrialPotential * Rw * Z * DZ
NEXT J

NEXT I

Force = PresForce + (SurfForce) / ((I + BondNo) * SQR(SIsFrq))

Moment = PresMoment + (SurfMoment) / ((i + BondNo) * SQR(SIsFrq))

IF Force < 0 THEN CLS : PRINT "The Slosh Force is Negative!": END

Ans2 = Moment / Force

' The non-dimensional kinetic energy of the liquid:
KinEnergy = 0

SMax = S(3, NN%)
FOR I = 1 TO NoNodes%

SELECT CASE I

CASE 1 ' get the right value of DeltaS

DS = (S(3, 2) -S(3, I)) / 2
CASE NoNodes%

DS = (S(3, NN%) - S(3, (NN% - i))) / 2
CASE ELSE

DS = (S(3, (I + I)) - S(3, (I - i))) / 2
END SELECT

RS = S(2, I): SS = S(3, I)

SurfMass = (ConstMass - (SS / SMax) ^ ExpMass) * (i + BondNo)
PotDeriv = 0

Pot = 0

FOR J = 1 TO NoModes% ' dPhi/dN at the integration point

PotDeriv = PotDeriv + BI(J) * TF(J) * SurfMass * PS((J + i), I)
NEXT J

FOR J = 1 TO NoModes% ' Phi at the integration point
Pot = Pot + PS((J + i), I) * BI(J)

NEXT J

KinEnergy = KinEnergy + PotDeriv * Pot * RS * DS
NEXT I

' Now compute the slosh mass. The mass is ratioed to the liquid mass that
' fills the tank.

Ansl= (Force) ^ 2 * (FillLevel / I00) / (KinEnergy * LiqVolume)

END SUB



***************************** TEXTIN **********************************

This subroutine is taken from the QUICKPAK set of functions. It is a

data entry routine that allows the cursor to be moved all over the

screen and permits the entered data to be corrected at any time.

Entry Parameters

T$ = string to be input or edited (use the name of your choice)

Max = maximum number of characters allowed

Colr is the combined foreground and background colors that will be used

CapsOn = force automatic conversion to upper case if 1

Note: CapsOn is not used here

NumOnly = allow only numeric input if 1

Exit Parameters

T$ = final edited string (the name passed as input to the function)

ExitCode indicates how editing was terminated -

0 = Enter, Tab, Down-Arrow, Right-Arrow past end, or field filled

I = Shift-Tab, Up-Arrow, or Left-Arrow past beginning

2 = Esc key pressed

Local Variables

X$ is a copy of the string while being input or edited

Insert holds status of insert mode

Curpo holds current cursor position relative to the beginning of the line

Length keeps track of the current length of the string

Clr = 1 if the monitor is a color monitor, for setting cursor size

A and AS are temporary scratch variables

SUB TextInl (T$, Max, NumOnly, CapsOn, ExitCode, Colr) STATIC

DEFINT A-Z

TInitialize:

Clr = 0

IF Peekl%(0, &H463) <> &HB4 THEN Clr = 1

xS = TS

TC:

ExitCode = 0: Insert = 0: Curpo = 1

Length = LEN(X$)

IF Length > Max THEN EXIT SUB

X$ = X$ + SPACES(Max - Length)

QPrint X$, Colt, -i

LOCATE , , 1

GOSUB TInsertOff

TGetKey:

'disallow insert if cursor past end

IF Curpo > Length AND Insert <> 0 THEN GOSUB TInsertOff

IF Curpo > Max GOTO TEnter

A$ = INKEY$

IF AS = "" GOTO TGetKey

IF LEN(A$) = 1 GOTO TRegularKey

A$ = RIGHTS (AS, i)

'determine monitor type

'X$ is a working copy of

' the input string

'initialize flags

'already to big to edit

'pad with trailing spaces

'turn on the cursor

'set cursor size according to display

'it was an extended key, get the code

'field is filled, handle as Enter key



ON INSTR(CHR$(15) + ".GHKMOPRSstu" + CHR$(19), AS) GOTO TShiftTab, TClear,

THome, TUp, TLeft, TRight, TEndKey, TDown, Tins, TDel, TCtrlLeft, TCtrlRight,
TCtrlEnd, TRestore

GOTO TGetKey 'none of the above, get again

TShiftTab:

ExitCode = 1 'user wants to go back a field

GOTO TEnter 'handle as if it were the Enter key

TClear:

X$ = "" 'AIr-C, erase the current string

GOSUB TInsertOff 'clear insert mode and restore cursor

LOCATE , POS(0) - (Curpo - i)

GOTO TC 'and start all over again

THome:

LOCATE , POS(0) - (Curpo - I) 'put cursor at beginning of line

Curpo = 1 'show cursor as being on ist character

GOTO TGetKey

TUp:

ExitCode = 1 'user wants to go back a field

GOTO TEnter 'handle as if it were the Enter key

TLeft:

IF Curpo = 1 GOTO TShiftTab 'cursor is on the first character,

'handle as if it were a Shift-Tab

Curpo = Curpo - 1 'update Curpo

LOCATE , POS(0) - 1 'back up the cursor

GOTO TGetKey

TRight:

Curpo = Curpo + 1 'update Curpo

LOCATE , POS(0) + 1 'advance the cursor on the screen

GOTO TGetKey

TEndKey:

LOCATE , POS(0) + (Length - Curpo) + 1 'put cursor at the end of the line

Curpo = Length + 1 'update Curpo

GOTO TGetKey

TDown:

GOTO TEnter

Tins:

IF Insert THEN

GOSUB TInsertOff

GOTO TGetKey
END IF

IF Curpo > Length GOTO TGetKey

IF Length = Max GOTO TGetKey

Insert = 1

IF Clr THEN

LOCATE , , , 0, 7
ELSE

LOCATE , , , 0, 13
END IF

GOTO TGetKey

TDeI:

IF Curpo > Length GOTO TGetKey

'insert is already on, turn it off

'ignore Ins if cursor is past the end

'also ignore if field is full

'set the insert flag

'set cursor size according to display

'ignore Del if cursor is past end



'slide all characters left one position, add a trailing space and re-print

MID$(X$, Curpo) s MID$(X$, Curpo + i) + ....

QPrint MID$(X$, Curpo), Colr, -i

Length _ Length - 1

GOTO TGetKey

TCtrlLeft:

IF Curpo = 1 GOTO TGetKey 'at the beginning, ignore

A = Curpo 'save cursor position

'we're within a word, find beginning

IF MID$(X$, Curpo - I, i) <> " " GOTO TSeekLeft2

TSeekLeftl:

IF Curpo = 1 GOTO TCtrlLeftExit 'at the beginning, give up

IF MID$(X$, Curpo - i, I) = " " THEN

Curpo z Curpo - 1

GOTO TSeekLeftl 'seek previous non-blank character
END IF

TSeekLeft2:

IF Curpo = 1GOTO TCtrlLeftExit 'at the beginning, give up

IF MID$(X$, Curpo - i, I) <> .... THEN

Curpo = Curpo - 1
GOTO TSeekLeft2 'seek character preceeded by a blank

END IF

TCtrlLeftExit:

LOCATE , POS(0) - (A - Curpo) 'position the cursor

GOTO TGetKey

TCtrlRight:

A = Curpo 'save cursor position

TSeekRightl:

IF A > Length GOTO TGetKey 'at the end, give up

IF MID$(X$, A, i) <> " " THEN
A = A + 1 'consider next character

GOTO TSeekRightl 'seek next blank space

END IF

TSeekRight2:

IF A > Length GOTO TGetKey

IF MID$(X$, A, i) ..... THEN
A=A+I

GOTO TSeekRight2

END IF

LOCATE , POS(0) + (A - Curpo)

Curpo = A

GOTO TGetKey

TCtrlEnd:

IF Curpo > Length GOTO TGetKey 'cursor is past the end, ignore

QPrint SPACES(Length - Curpo + i), Colt, -i 'blank from cursor to end

Length = Curpo - 1 'show the length being at the cursor

GOTO TGetKey 'get another keypress

TRestore:

'show string as one character shorter

'at the end, give up

'consider next character

'seek next non-blank character

'position the cursor

'show cursor as being on the next word

'get another keypress



LOCATE POS(0) - (Curpo - i) 'locate cursor at beginning of line,
f

GOTO TInitialize ' and start all over again

TRegularKey:

IF A$ < " " THEN 'a control key

ON INSTR(CHR$(8) + CHR$(9) + CHR$(13) + CHR$(27), AS) GOTO TBackspace,

TTabKey, TEnter, TEscape

GOTO TGetKey 'none of the above

END IF

IF CapsOn THEN 'convert to upper case if requested

IF A$ >= "a" AND A$ <= "z" THEN A$ = CHR$(ASC(A$) AND 95)

END IF

IF NumOnly THEN 'disallow non-numeric if requested

IF A$ < "0" OR AS > "9" THEN

PLAY "LI603EC"

GOTO TGetKey

END IF

END IF

QPrint AS, Colr, -I 'print character

LOCATE , POS(0) + 1

Curpo = Curpo + 1 'show cursor being ahead

IF Insert GOTO THandleInsert

MID$(X$, Curpo - i, i) = A$ 'assign the character

'cursor is past end, increase length

IF Curpo > Length + 1 THEN Length = Curpo - 1

'field complete, handle as Enter key

IF Length = Max AND Curpo > Length GOTO TEnter

GOTO TGetKey

THandleInsert:

Length = Length + 1 'show string being 1 character longer

MID$(X$, Curpo) = MID$(X$, Curpo - I) 'move characters one position ahead

MID$(X$, Curpo - I, i) = A$ 'assign the current character

QPrint MID$(X$, Curpo, Length - Curpo + i), Colr, -I 're-print X$

IF Length = Max GOTO TEnter

GOTO TGetKey

TBackspace:

IF Curpo = 1 GOTO TGetKey

Curpo = Curpo - 1

LOCATE , POS(0) - 1

GOTO TDel

TTabKey:

TEnter:

GOSUB TInsertOff

X$ = LEFT$(X$, Length)

T$ = X$
LOCATE , , 0

EXIT SUB

TEscape:

ExitCode = 2

GOTO TEnter

'field complete, handle as Enter key

'can't back up any more, ignore

'show cursor being 1 character before

'back up the cursor

'handle as if it were the Delete key

'reserved for your Tab routine if you

' want to handle it differently

'clear insert, restore cursor size

'retain only the current length

'assign the string

'turn off the cursor

'show that the user pressed Escape

'handle as if it were the Enter Key

TInsertOff :



'clear Insert mode and restore cursor, depending on monitor type

Insert _ 0

IF Clr THEN

LOCATE , , , 6, 7
ELSE

LOCATE , , , 12, 13
END IF

RETURN

END SUB



' ******************************** VECTOR**************************
' This subroutine computesthe eigenvectors or modalparticpation factors

SUBVector (F2, CI(), C2(), Result())
DEFSNGA-Z
SHAREDNoModes%
DIM CR(3, 3)
SELECTCASENoModes%

CASE1
Result (i) = 1

CASE 2

Result (i) -- 1

Result(2) ---(CI(I, I) + F2 * C2(I, i)) / (CI(I, 2) + F2 * C2(I, 2))
CASE 3

Result(1) = 1

FOR I -- 1 TO 3

FOR J = 1 TO 3

CR(I, J) = CI(I, J) + F2 * C2(I, J)
NEXT J

NEXT I

TermTop = CR(2, 2) * CR(I, i) - CR(2, I) * CR(I, 2)

TermBot--CR(I, 2) * CR(2, 3) -CR(I, 3) + CR(2, 2)

Result (3) -- TermTop / TermBot

Result(2) = (-CR(I, 3) * Result(3) -CR(I, i)) / CR(I, 2)
END SELECT

END SUB



t ***************************** WAVE HITE **************************

' This subroutine computes the wave height of the trial functions.

' However, the frequency multiplication term is not included.

SUB WaveHite (Coo,d(), ModeS(), TempNo())

SHARED NoModes%, NoNodes%, ConstMass, ExpMass

SMax = Coord(3, NoNodes%) ' Value of S coord at contact point

FOR I - 1 TO NoNodes%

DistMass = ConstMass - (Coord(3, I) / SMax) ^ ExpMass

FOR J = 1 TO NoModes%

TempNo(J, I) - DistMass * ModeS((J + i), I)

NEXT J

NEXT I

END SUB


